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ABSTRACT

Bayes factors can be used to provide quanti!able evidence for contrasting hypotheses and have thus become increasingly popular 
in cognitive science. However, Bayes factors are rarely used to statistically assess the results of neuroimaging experiments. Here, 
we provide an empirically driven guide on implementing Bayes factors for time-series neural decoding results. Using real and simu-
lated magnetoencephalography (MEG) data, we examine how parameters such as the shape of the prior and data size affect Bayes 
factors. Additionally, we discuss the bene!ts Bayes factors bring to analysing multivariate pattern analysis data and show how using 
Bayes factors can be used instead or in addition to traditional frequentist approaches.
Acknowledgements: This research was supported (in part) by the Intramural Research Program of the NIMH (ZIAMH002909). We thank Lincoln Colling for contributing to the repository.

Corresponding author: lina.teichmann@nih.gov

Date Received: June 24, 2021

Date Accepted: January 16, 2022

DOI: 10.52294/82179f90-eeb9-4933-adbe-c2a454577289

Bayes factors to test the probability of above-chance 
classi!cation versus at-chance classi!cation given the 
decoding results across participants at each timepoint. 
The direct comparison of the predictions of two hypoth-
eses is one of the strengths of the Bayesian framework 
of hypothesis testing (Jeffreys, 1935, 1939). The goal of 
this paper is to present and discuss Bayes factors from 
a practical standpoint in the context of time-series de-
coding, while referring the reader to published work 
focusing on the theoretical and technical background 
of Bayes factors.

The Bayesian approach brings several advantages over 
the traditional NHST framework (Dienes, 2011, 2014, 2016; 
Keysers et al., 2020; Morey et al., 2016; Wagenmakers  
et al., 2018). In addition to allowing us to contrast evidence  
for above-chance versus at-chance decoding directly, 
Bayes factors are a measure of strength of evidence for 
one hypothesis versus another. That means, we can di-
rectly assess how much evidence we have for different 
analyses. For example, if we were interested in testing 
whether viewing different colours evokes different neural 
responses, we could examine differences in the neural 
signal evoked by seeing red, green, and yellow objects. 
Using Bayes factors, we could then directly compare 

INTRODUCTION

The goal of multivariate decoding in cognitive neu-
roscience is to infer whether information is represented 
in the brain (Hebart & Baker, 2018). To draw meaning-
ful conclusions in this information-based framework, 
we need to statistically assess whether the conditions 
of interest evoke different data patterns. In the con-
text of time-resolved neuroimaging data, activation 
patterns are extracted across magnetoencephalog-
raphy (MEG) or electroencephalography (EEG) sen-
sors, and classi!cation accuracies are used to estimate  
information at every timepoint (see Figure 1 for an 
example). Currently, null hypothesis statistical testing 
(NHST) and p-values are the de facto method of choice 
for statistically assessing classi!cation accuracies, 
but recent studies have started using Bayes factors 
(Grootswagers et al., 2021; e.g., Grootswagers et al., 
2019b; Grootswagers, Robinson, Shatek, et al., 2019; 
Kaiser et al., 2018; Karimi-Rouzbahani et al., 2021; Mai 
et al., 2019; Proklova et al., 2019; Robinson et al., 2019, 
2021). Bayes factors describe the probability of one hy-
pothesis over the other given the observed data. In the 
multivariate pattern analysis (MVPA) context, we use 
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whether red versus green can be decoded as well as red 
versus yellow. Larger Bayes factors re#ect more evidence 
that makes the interpretation of statistical results across 
analyses more intuitive. Another advantage is that Bayes 
factors can be calculated iteratively while more data are 
being collected and that testing can be stopped when 
there is a suf!cient amount of evidence (Keysers et al., 
2020; Wagenmakers et al., 2018). Such stopping rules 
could be accompanied by a pre-speci!ed acquisition 
plan and potentially an (informal) pre-registration via 
portals such as the Open Science Framework (Foster & 
Deardorff, 2017).

Using the data to determine when enough evi-
dence has been collected is particularly relevant for 

neuroimaging experiments, as it might signi!cantly re-
duce research costs and reduce the risk of having under-
powered studies. Thus, using a Bayesian approach to 
statistically assess time-series classi!cation results can be 
bene!cial both from a theoretical as well as an economic 
standpoint and might ease the ability to interpret and 
communicate scienti!c !ndings.

While Bayes factors provide an alternative to the more 
traditional NHST framework, incorporating Bayes fac-
tors into existing time-series decoding pipelines may 
seem daunting. Introductory papers often focus on 
mathematical aspects and on relatively straightforward 
behavioural experiments (e.g., Ly et al., 2016; Morey  
et al., 2016; Rouder et al., 2009). We present an example  

Fig. 1. Overview of MVPA for time-series neural data. (A) Example MEG sensors/EEG channels. (B) Simulated time-series neuroimaging data for a few sensors/
channels. Vertical lines show stimulus onsets with example stimuli plotted below. Data are !rst epoched from −100 ms to 800 ms relative to stimulus onset, resulting in 
multiple time-series chunks associated with seeing a red or a green shape. (C) Using the epoched data, we can extract the sensor/channel activation pattern across the 
different sensors/channels (only 2 displayed for simplicity) for every trial at every timepoint. Then a classi!er (black line) is trained to differentiate between the activation 
patterns evoked by red and green trials. The shape of the stimuli is not relevant in this context. (D) Example of a 4-fold cross validation where the classi!er is trained on 
three quarters of the data and tested on the left-out quarter. This process is repeated at everytimepoint. (E) We can calculate how often the classi!er accurately predicts 
the colour of the stimulus at each timepoint by averaging across all testing folds. Theoretical chance level is 50% as there are two conditions in the simulated data (red 
and green). During the period before stimulus onset, we expect decoding to be at chance, and thus the baseline period can serve as a sanity check.
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the neural signal was recorded using MEG. Here, we 
only considered the coloured shape trials (“real colour 
blocks”, 1600 trials in total). Identical shapes were co-
loured in red or green and were shown for 100 ms fol-
lowed by an inter-stimulus interval of 800–1100 ms. The 
data were epoched from −100 ms to 800 ms (200 Hz res-
olution) relative to stimulus onset and a linear classi!er 
was used to differentiate between the neural responses 
evoked by red and green shapes. A 5-fold cross-valida-
tion was used with the classi!er being trained on 80% of 
the data and tested on the remaining 20%. This classi!-
cation analysis resulted in decoding accuracies over time 
for each participant. In the original study, permutation 
tests and cluster-corrected p-values were used to assess 
decoding accuracies as implemented in CoSMoMVPA 
(Oosterhof et al., 2016). Here, we calculated Bayes fac-
tors instead and examined how parameter changes af-
fected the results.

When running statistical tests on classi!cation re-
sults, we are interested in whether decoding accuracy 
is above chance at each timepoint. To test this using a 
frequentist approach, we can use permutation tests to 
establish whether there is enough evidence to reject H, 
which states that decoding is equal to chance. If there 
is enough evidence, we can reject H and conclude 
that decoding is different from chance. Given that be-
low-chance decoding accuracies are not meaningful, we 
usually are interested only in above-chance decoding 
(directional hypothesis).

In contrast to the frequentist approach, Bayes fac-
tors quantify how much the plausibility of two hypoth-
eses changes, given the data (see e.g., Ly et al., 2016). 
Here, we ran a Bayesian t-test of Bayes Factor R package 

based on a previously published time-series decod-
ing study (Teichmann et al., 2019) and will present re-
sults from simulations to show the in#uence of certain 
parameters on Bayes factors. We make use of the es-
tablished Bayes Factor R package (Morey et al., 2015) 
to calculate the Bayes factors but provide sample codes 
along with this paper showing how to access the Bayes 
Factor R package via Matlab and Python (https://github.
com/LinaTeichmann1/BFF_repo). We also show how 
the Bayes factors in our example compare to p-values. 
Based on empirical evidence, we will give recommen-
dations for Bayesian analysis applied to M/EEG clas-
si!cation results. The aim of this paper is to provide a 
broad introduction to Bayes factors from a viewpoint of 
time-series neuroimaging decoding. We aim to do so 
without going into the technical or mathematical detail 
and instead provide pointers to relevant literature on the 
speci!cs.

METHODS AND RESULTS

Example dataset and inferences based on Bayes 
factors

The aim of the current paper is to show how to use Bayes 
factors when assessing time-series neuroimaging classi-
!cation results and test what effect different analysis pa-
rameters have on the results. We have used a practical 
example of previously published MEG data (Teichmann 
et al., 2019), which we re-analysed using Bayes factors. 
In the original experiment, participants viewed coloured 
shapes and grayscale objects in separate blocks while 

Fig. 2. Decoding results of our practical example dataset with statistical assessments. (A) Colour decoding over time (black line). The dashed line shows theoretical 
chance decoding (50%). The grey-shaded area represents the standard error across participants. (B) Effect size over time with the cluster-corrected p-values at each 
timepoint printed below in grey. (C) Bayes factors over time for this dataset on a logarithmic scale. Blue, upwards pointing stems indicate evidence for above-chance 
decoding and red, downwards pointing stems show evidence for at-chance decoding at every timepoint. We used a hybrid one-sided model comparing evidence for 
above-chance decoding versus a point-nil at 0 = ߜ (no effect). For the alternative hypothesis, we used a half-Cauchy prior with medium width (r = 0.707) covering an inter-
val from 0.5 = ߜ to ߜ = ∞. The half-Cauchy prior assumes that small effect sizes are more likely than large ones, but the addition of the interval deems very small effects ߜ 
< 0.5 as irrelevant. During the baseline period (i.e., before stimulus onset), the Bayes factors strongly support the null hypothesis, con!rming the sanity check expectation.
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Fig. 3. The effect of changing the prior range (null interval) on Bayes factors in our example data. Intervals starting at larger effect sizes led to more timepoints show-
ing conclusive evidence for H. This is due to the fact that theoretical and observed chance levels are not the same. The panels on the right show the prior distributions 
with the different null intervals.

(Morey et al., 2015) at each timepoint, testing whether 
the data are more consistent with Hᩱ (decoding is larger 
than chance) over H (decoding is equal to chance). The 
resulting Bayes factors centre around 1 with numbers 
smaller than 1 representing evidence for H and numbers 
larger than 1 representing evidence for Hᩱ. In contrast 
to p-values, Bayes factors are directly interpretable and 
comparable (cf. Keysers et al., 2020; Morey et al., 2016; 
Wagenmakers et al., 2016). That is, a Bayes factor of 10 
means that the data are 10 times more likely to be ob-
served under Hᩱ as opposed to H. Similarly, a Bayes fac-
tor of 1/10 means that the data are 10 times more likely 
to be observed under H as opposed to Hᩱ. Thus, in the 
context of time-series decoding, Bayes factors allow us 
to directly assess whether and how much evidence there 
is at a given timepoint for the alternative over the null 
hypothesis and vice versa (Figure 2C).

Adjusting the prior range to account for observed 
chance decoding

Bayes factors represent the plausibility that the data 
emerged from one hypothesis compared to another. In 
the example dataset, the two hypotheses are that decod-
ing is at chance (i.e., H, no colour information present) or 
that decoding is above chance (i.e., Hᩱ, colour informa-
tion present). To deal with the fact that observed chance 
decoding can be different than the theoretical chance 
level, we can adjust the prior range of the alternative hy-
pothesis to allow for small effects under the null hypoth-
esis (Morey & Rouder, 2011). The prior range (called “null 
interval” in the R package) is de!ned in standardized ef-
fect sizes and consists of a lower and upper bound. To 
incorporate the differences between observed and the-
oretical chance level, we can de!ne a range of relevant 
effect sizes for the alternative hypothesis, for example,  
from 0.5 = ߜ to ߜ = ∞. To determine which values are rea-
sonable as the lower bound of this interval, we changed 

the prior range systematically and examined the effect 
on the resulting Bayes factors (Figure 3). We found that 
smaller lower bounds at 0 = ߜ and 0.2 = ߜ resulted in 
weaker evidence supporting the null hypothesis than 
ranges starting at 0.5 = ߜ and 0.8 = ߜ.

The range did not have a large effect on timepoints 
with strong evidence for Hᩱ. The effect of changing the 
prior range is larger for the null hypothesis than the al-
ternative as chance decoding is not exactly 50% but dis-
tributed around chance. Changing the lower bound of 
the prior range means that the effects that are just larger 
than 0 = ߜ can support the null hypothesis. Thus, the re-
sults here demonstrate that we can compensate for the 
differences between theoretical and observed chance 
by adjusting the prior range and effectively considering 
small effect sizes as evidence for the null hypothesis rath-
er than the alternative.

To further examine what a reasonable lower bound of 
the prior range is, we looked at effect sizes observed 
during the baseline window (before stimulus onset) in 
a selection of our previous studies (Grootswagers et al., 
2021; Grootswagers et al., 2019a; Moerel, Grootswagers 
et al., 2021; Moerel, Rich, et al., 2021; Teichmann et al., 
2018, 2020). Using the baseline window allows us to 
quantify the difference between theoretical and ob-
served chance, as we do not expect any meaningful  
effects before stimulus onset (e.g., stimulus colour is not 
decodable before the stimulus is presented). Thus, the 
baseline period can effectively tell us which effect sizes 
can be expected by chance. Using this method, we es-
timated maximum effect sizes for different analyses in 
each paper (see different bars in Figure 4). Across our 
selection of prior studies, we found an average maxi-
mum effect size of 0.39 = ߜ before stimulus onset and an 
average maximum effect size of 1.91 = ߜ after stimulus 
onset (Figure 4). This survey shows that effect sizes as 
large as 0.5 = ߜ can be observed when no meaningful 
information is in the signal. Thus, this supports the con-
clusions from the example dataset showing that prior 
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Fig. 4. Estimated maximum effect sizes during baseline and after stimulus onset for prior decoding studies that used visual stimuli. Using already published data, 
we calculated the maximum effect sizes during the baseline (light blue) and post-stimulus (dark blue) to estimate typical peak effect sizes in visual decoding studies. 
Each bar represents a unique analysis within the paper. The estimations show that a reasonable range for Hᩱ would start at 0.5 = ߜ or above, as during baseline decoding 
accuracies corresponding to standardized effect sizes as high as 0.5 = ߜ were observed.

ranges with a lower bound of 0.5 = ߜ may be a sensible 
choice when using Bayes factors to examine time-series 
M/EEG decoding results. 

Changing the prior width to capture different 
effect sizes

Another feature that can be changed in the Bayesian t-test 
is the width of the half-Cauchy distribution (referred to as 
r-value in the Bayes Factor package). Small r-values create 
a narrower, sharply peaking distribution, whereas larger 
values make the distribution wider with a prolonged peak. 
Standard prior widths incorporated in the Bayes Factor R 
package are medium (r = 0.707), wide (r = 1), and ultraw-
ide (r = 1.414). Keeping the prior range consistent ([0.5, 
Inf]) while using the three prior widths implemented into 
the R Bayes Factor package (medium = 0.707; wide = 1; 
ultrawide = 1.414). We found that changing the width of 
the Cauchy prior did not have a pronounced effect on the 
Bayes factors (Figure 5). In our speci!c example, this is 
probably the case because the effect sizes quickly rose to 
-which means that the subtle differenc ,(Figure 2b) 2 < ߜ
es between the different prior widths do not have a sub-
stantial effect on the likelihood of the data arising from 
Hᩱ over H. Thus, using the default prior width (r = 0.707) 
for the decoding context seems like a reasonable choice.

The effect of data size on statistical inferences

In a lot of cases, there are !nancial and time limits on how 
many participants can be tested and for how long. To ob-
tain an estimate of how much data are needed to draw 
conclusions and avoid ending up with underpowered stud-
ies, we used the example dataset and reduced the data 
size for analysis. As classi!cation analyses are usually run 
at the subject level but statistical assessment is run at the 
group level, we tested how changing data size both by trial 
numbers and participant numbers in#uences Bayes factors 
in the time-series decoding context (Figure 6). In the origi-
nal example dataset, the classi!er was trained on 1408 trials 
and tested on 352 trials (5-fold cross- validation). There were 
!ve different shapes in the red and the green condition (160 
repetitions for each coloured shape), and the cross-valida-
tion schema was based on leaving all trials of one shape 
out for testing. Statistical inferences were drawn on the 
group level that contained data from 18 participants. To ex-
amine the effect of data size (and effectively noise level) on 
the Bayes factor calculations, we re-ran the analysis reduc-
ing the data size !rst by retaining the !rst 1200 (75%), 800 
(50%), 400 (25%), or 160 (10%) trials participants completed. 
We cross-validated in the same way as in the original paper, 
with the only difference being how many trials of each 
shape were included. In addition, we subsampled from 
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Fig. 5. Bayes factors over time for the example dataset when the prior width is changed. The width of the prior had no pronounced effect on the Bayes factors we 
calculated. The panels on the right show the prior distributions with the different widths.

Fig. 6. Results of the colour MEG decoding study, using a limited number of trials and participant data to simulate a piloting scenario. (A) The !rst three plots show 
Bayes factors over time along with cluster-corrected p-values. The colour in all plots re#ects the number of trials used to train and test the classi!er. (B) Compares Bayes 
factors at peak decoding (125 ms) for the different data sizes. (C) Compares how many participants would have needed to be tested given the different number of trials 
with an example pre-de!ned stopping point. For example, with 1600 trials and >9 participants, 80% of the Bayes factors (at different timepoints) exceeded 6 or 1/6. With 
fewer trials, more participants are needed to reach this example stopping point.

the whole group, retaining data from the !rst 6, 12, or all 
18 participants and re-ran the statistical analysis. We then 
compared the results from the reduced-size colour data-
sets using Bayes factors and cluster-corrected p-values.1 

Overall, our analyses highlight that we need to have a 
large enough number of trials and a large enough num-
ber of participants to draw !rm conclusions about our 
time-resolved decoding results. Testing more participants 

resulted in stronger evidence for Hᩱ and H, with fewer 
timepoints in the inconclusive range (Bayes factors) and 
more signi!cant above-chance decoding timepoints 
(p-values). Similarly, running the classi!cation with more 
trials, led to more timepoints with large Bayes factors sup-
porting Hᩱ and more above-chance decoding timepoints. 
However, one of the key advantages of using Bayes fac-
tors instead of p-values is that we can potentially obtain 

1 In comparison to the original paper, we did not use trial label permutations. Instead, we performed sign-#ip permutations (which reduces the computational time) as 
implemented in CoSMoMVPA to generate the null distribution.
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data after 9 participants completed 1600 trials or after 18 
participants completed 400 (Figure 6c). Overall, the data 
suggest that insuf!cient data at the subject-level ultimate-
ly leads to inconclusive evidence, highlighting that a large 
number of trials is just as, if not more important, than large 
numbers of participants. 

The example dataset provides insight into the effect of 
parameters such as data size and prior shape on Bayes 
factors. However, it is possible that different studies !nd 
different effect sizes. We simulated larger datasets with 
!xed effect sizes between 0 = ߜ and 1 = ߜ to examine the 
interaction of sample size with different prior ranges for 
different effect sizes (Figure 7). We simulated 1000 data-
sets with speci!c effect sizes for each sample size and cal-
culated the Bayes factors. We then calculated the median 
Bayes factor for each sample- and effect size combination 

a good idea of how many trials are needed even if we 
run a pilot experiment with a limited number of partici-
pants. A reasonable strategy would be to overpower the 
subject-level data (i.e., number of trials) for the pilot sam-
ple and then sub-sample to explore how many trials are 
needed. In our example, we can see that the amount of 
evidence for Hᩱ at peak decoding is not suf!cient when 
we only use 160 trials (10% of the original sample), regard-
less of the number of subjects. Increasing the trials to 400 
or 800 (25% or 50% of the original sample) leads to similar 
conclusions as using all 1600 trials. As Bayesian statistics 
allow for sequential sampling, we could collect data from 
more participants until a criterion is reached. For example, 
if we had pre-de!ned a stopping criterion as 80% of the 
timepoints being in the conclusive range (Bayes factors 
>6 or <1/6), we would have been able to stop collecting 

Fig. 7. Simulated data varying effect sizes and numbers of participants highlight the rationale for using an interval. We performed 1000 simulations to demonstrate 
how the Bayes factors behave with different sample sizes given different effect sizes. A shows Bayes factors obtained by using a half-Cauchy prior with an interval [0.5 Inf]. 
B shows Bayes factors obtained by using a half-Cauchy prior without an interval. The !rst and third rows show the median Bayes factors of 1000 simulations as a function 
of the number of participants. The second and fourth rows show the distribution of the Bayes factors from 1000 simulations using 30 participants (left panels) and 100 
participants (right panels). The distributions of the Bayes factors highlight the rationale for using an interval, as without an interval it is nearly impossible to !nd substantial 
evidence for the null hypothesis even when the effect size equals zero.
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Our results showed that the overall conclusions de-
rived from Bayes factors and p-values were quite similar, 
highlighting that theoretical considerations should be 
the deciding factor when choosing a statistical approach 
to analyse neural time-series data. In the decoding con-
text, p-values afford a dichotomous decision of whether 
there is enough evidence to reject the hypothesis that 
decoding is at chance at a given timepoint. Rejecting 
the null hypothesis is decoupled from any prior beliefs 
or theories (Dienes, 2011) and is linked to an accepted 
overall error rate such as α = 0.05. p-Values allow us to 
test for the presence of an effect at a given timepoint 
using widely accepted thresholds for evidence. While 
Bayes factors can in principle also be thresholded to 
draw dichotomous conclusions, one of the added bene-
!ts of Bayes factors over p-values is the ability to quantify 
the evidence. Another useful bene!t of using Bayes fac-
tors to analyse time-series decoding data is that Bayes 
factors allow us to accrue evidence for above-chance as 
well as at-chance decoding. For time-series analyses in 
particular, this is a useful feature as the time period prior 
to stimulus onset can be considered as a control period 
where we would expect evidence for the null hypothesis. 
Testing both hypotheses simultaneously can also be a 
bene!cial feature when the research question involves 
hypotheses predicting certain time-periods without any 
information in the neural signal (e.g., “X happens before 
Y” versus “Y happens before X”). Thus, depending on 
the research question it may be clear which statistical 
approach suits the time-series decoding analysis best. 
Otherwise, as overall conclusions do not differ, Bayes 
factors and p-values can be used in a complementary 
way to provide quanti!able evidence for and against 
the tested hypotheses as well as de!nitive decisions 
(see also Lakens et al., 2020; van Dongen et al., 2019; 
Wagenmakers et al., 2018).

Through our results, we provide an empirical, straight-
forward guide to help implement Bayes factors and 
demonstrate the extent of practical bene!ts when using 
Bayes factors for time-series neural decoding. Using 
a data-driven approach, we showed which analysis pa-
rameters are most suitable for statistical assessment of 
time-series decoding data with Bayes factors. While the 
Bayes factors in our example MEG decoding dataset 
were robust against changes in the pre-de!ned width of 
the prior, de!ning the prior range so that there is a gap 
between Ha and H was critical for !nding evidence for 
the H. This strong effect of the prior range on the result-
ing Bayes factors is particularly relevant in the decoding 
context, as classi!cation accuracies under the null are 
not symmetrically distributed around chance (cf. Allefeld  
et al., 2016). Thus, a gap between H and the lower bound  
of Hᩱ ensures that small above-chance classi!cation ac-
curacies are not treated as evidence for Hᩱ. Furthermore, 
we systematically varied dataset size and showed that 
using Bayes factors for time-series decoding data is par-
ticularly bene!cial when there is limited, noisy data such 

to show how prior range choices interact with the pos-
sibility of !nding evidence for effects of different sizes. 
Speci!cally, we compared a prior range of 0.5 to in!nity 
(Figure 7A) to a prior range of zero to in!nity (Figure 7B).

When specifying the prior range to 0.5 to in!nity 
(Figure 7A), our results show that small sample sizes are 
suf!cient to draw solid conclusions when the effect sizes 
are near the extremes. For example, the simulations 
showed that there is substantial evidence for H from a 
small sample size if the true effect is very small. In con-
trast, if the effect size fell in between the speci!ed ranges 
for the prior of Hᩱ and H (i.e., between 0 and 0.5), we 
found that small sample sizes tended to result in incon-
clusive Bayes factors neither supporting Hᩱ or H.

However, if the sample size increased, the con!dence 
that these effects were “real” also increased and there-
fore resulted in stronger con!dence supporting one of 
the hypotheses. Importantly, however, large sample sizes 
did not automatically lead to an interpretable Bayes 
Factor if the effect was truly in between the speci!ed 
prior ranges of Hᩱ and H, indicating that sample size 
had no effect on Bayes factors in this case.

Consistent with our results for the example data, the 
simulations also showed that changing the range of the 
prior has a strong effect on !nding substantial evidence 
for H. If the prior range for the alternative is speci!ed to 
start at zero (Figure 7B), it was almost impossible to !nd 
any evidence for H, even if the effect size was truly zero. 
Thus, the simulations show that de!ning the prior range 
with a gap between effects expected under H and Hᩱ is 
critical and that more data lead to larger Bayes factors, 
but only if there is a true underlying effect.

DISCUSSION

Bayes factors have seen a recent increase in popularity in 
cognitive science, as they can be used to provide quan-
ti!able evidence for contrasting hypotheses. However, 
their uptake has to date been slow for neuroimaging ex-
periments. To facilitate their adoption, we have provided 
an empirically driven guide on implementing Bayes fac-
tors for time-series neuroimaging decoding, using both 
real and simulated data. We showed that using Bayes fac-
tors and cluster-corrected p-values lead to similar results 
when statistically assessing time-series neuroimaging 
decoding results. However, the key advantages of using 
Bayes factors are the ability to compare evidence for Hᩱ 
with evidence for H and having results that are quanti!-
able (e.g., Dienes, 2014; Wagenmakers et al., 2016). Our 
results show that for time-series decoding data, half-Cau-
chy priors with default width and an interval ranging from 
effect sizes of 0.5 to in!nity provide sensible results. We 
also show that even a small number of participants can 
yield informative Bayes factors, which can be useful for 
making decisions on experimental design parameters 
(e.g., number of trials) during piloting stages of a study.
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as in a piloting scenario, as quanti!able evidence for one 
hypothesis over another gives a stronger sense of wheth-
er it is worth pursuing the research question with the pi-
loted design, or make changes (e.g., modify trial numbers 
or add/remove conditions). Finally, Bayes factors can be 
calculated sequentially while evidence accumulation is 
monitored to stop once a criterion is reached (Dienes, 
2011; Rouder, 2014), which can save resources and avoid 
underpowered studies (Wagenmakers et al., 2018). One 
possibility is to de!ne a stopping criterion in terms of a 
percentage of timepoints where evidence is in the con-
clusive range of Bayes factors (e.g., 80% of Bayes factors 
are above 6 or below 1/6). As longer baselines can arti!-
cially increase the percentage of conclusive timepoints, 
only timepoints after stimulus onset should be consid-
ered or the duration of the baseline period should be 
pre-de!ned. As researchers generally do not have unlim-
ited resources, it is possible to also pre- register an upper 
limit for the sample size (e.g., maximum 50 participants).

An open question is to what extent our parameter 
choices generalize to different paradigms, analysis ap-
proaches, and modalities. The Bayes factor parameters 
used here were optimized for time-series decoding. It is 
in principle possible to use Bayes factors in a similar way 
to analyse other time-series data such as event- related 
potentials, oscillations, or regressions; however, the Bayes 
factor parameters might have to be adjusted. Similarly, 
the analysis pipeline discussed here could be extended 
to other neural decoding modalities such as fMRI (see 
e.g., Moerel, Rich, et al., 2021). Pilot data or analyses of 
previous data can be used to examine how parameters 
have to be modi!ed in order to get sensible results. 

A !nal consideration is the multiple comparisons prob-
lem arising from statistically testing many timepoints. 
When using Bayes factors, as long as the evidence 
for each hypothesis is interpreted at face value (and 
not thresholded for “signi!cance”), we do not need to 
control for multiple comparisons (Dienes, 2011, 2016; 
S’wiątkowski & Carrier, 2020). That is because once we 
have established a prior and collected the data, we ex-
amine how much we have to adjust our prior beliefs 
given the data and compare the adjustment required 
for both hypotheses. This idea is not related to over-
all error rates and thus does not change if we sample 
data sequentially or run multiple tests (Dienes, 2016). If a 
research question strongly depends on a dichotomous 
decision on multiple tests, then we advise to report cor-
rected p-values (for which correction methods are well 
established) alongside the Bayes factors.

In conclusion, we have provided an empirically driv-
en guide on how to use and interpret Bayes factors for 
time-series neuroimaging decoding data. We show 
that Bayes factors bring several advantages to inter-
preting time-series decoding results such as quanti!able 
evidence and an ability to compare evidence for above-
chance with evidence for at-chance decoding. We hope 

this guide and the accompanying example code (https://
github.com/LinaTeichmann1/BFF_repo) can serve as a 
starting point to incorporate Bayesian statistics to exist-
ing analysis pipelines.
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