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The recall and visualization of people and places from memory is an everyday occurrence,

yet the neural mechanisms underpinning this phenomenon are not well understood. In

particular, the temporal characteristics of the internal representations generated by active

recall are unclear. Here, we used magnetoencephalography (MEG) and multivariate pattern

analysis to measure the evolving neural representation of familiar places and people

across the whole brain when human participants engage in active recall. To isolate self-

generated imagined representations, we used a retro-cue paradigm in which participants

were first presented with two possible labels before being cued to recall either the first or

second item. We collected personalized labels for specific locations and people familiar to

each participant. Importantly, no visual stimuli were presented during the recall period,

and the retro-cue paradigm allowed the dissociation of responses associated with the la-

bels from those corresponding to the self-generated representations. First, we found that

following the retro-cue it took on average ~1000 ms for distinct neural representations of

freely recalled people or places to develop. Second, we found distinct representations of

personally familiar concepts throughout the 4 s recall period. Finally, we found that these

representations were highly stable and generalizable across time. These results suggest

that self-generated visualizations and recall of familiar places and people are subserved by

a stable neural mechanism that operates relatively slowly when under conscious control.
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1. Introduction

The ability to recall and generate sustained representations

from memory facilitates many everyday tasks, such as trying

to locate a familiar person in a crowd or a specific house while

driving. These internally generated representations also un-

derlie our capacity to remember individual people and places

that have personal significance. Regions within the medial

temporal lobe, particularly the hippocampus, play an integral

role in these memory processes and are fundamental to suc-

cessful recollection of events, people and places (Diana et al.,

2007; Liang & Preston, 2017; Ranganath & Ritchey, 2012;

Yonelinas et al., 2019). In addition to the memory system

within the medial temporal lobe, areas in lateral parietal

cortex,medial parietal cortex and ventral temporal cortex also

appear to support memory recall (Gilmore et al., 2015; Kim,

2013; Rugg & King, 2018; Silson et al., 2019; Vilberg & Rugg,

2008; Wagner et al., 2005). In particular, in medial parietal

cortex the recall andmental visualization of people and places

engages distinct anatomical regions (Peer et al., 2015; Silson

et al., 2019; Woolnough et al., 2020).

While previous fMRI work has revealed a cortical locus for

the recall of familiar people and places (Silson et al., 2019), the

temporal dynamics of such recall remain unclear. Studies of

event-related potentials have revealed that differences in

slow wave amplitude and topography are present during

recall of learned face stimuli and associated position from

long-termmemory (Khader et al., 2005), suggesting categorical

differences may be present at a fine temporal scale. Charac-

terization of the temporal properties of recalled representa-

tions is necessary to understand the complex neural

mechanisms underlying this ability. For example, is there a

sudden or gradual onset of information when we imagine

locations or people that are familiar to us? Is the representa-

tion of recalled information brief and quickly evolving or does

the recalled representation remain stable over time? These

questions cannot be answered with the slow temporal reso-

lution of fMRI. We address this gap through the use of whole-

brain magnetoencephalography (MEG) to reveal the temporal

evolution of self-generated imagined representations of

personally familiar people and places.

A related but distinct area of research explores the neural

mechanisms underlying visual mental imagery. Recent

studies investigating the temporal dynamics of recall have

primarily examined mental imagery for images presented

during the experiment, with a focus on characterizing the

similarity of mechanisms engaged in visual perception and

visual imagery (Dijkstra et al., 2018, 2019, 2020; Shatek et al.,

2019; Xie et al., 2020). For example, category membership

(face vs house) can be decoded from whole-brain MEG when

participants view face or house images, and when they sub-

sequently imagine the same images (Dijkstra et al., 2018).

Similarly, EEG recordings suggest shared mechanisms be-

tween imagery and perception in alpha oscillations (Xie et al.,

2020). It is likely, however, that visual imagery of novel images

learned during an experimental context primarily reflects the

engagement of visual regions in ventral temporal cortex and

not the extended network of regions implicated in memory

recall (Kosslyn, 2005; O'Craven & Kanwisher, 2000). In
contrast, we instead focus on revealing the temporal evolu-

tion of self-generated representations of people and places

that are personally relevant, which are likely to engage rich

and highly detailed memory representations. This is sup-

ported by the greater response previously observed in medial

parietal and medial frontal cortex with fMRI during the recall

of people and places that were personally familiar compared

to those that were famous (Silson et al., 2019).

We usedMEG andmultivariate pattern analysis tomeasure

dynamic neural activation patterns as participants recalled

personally familiar people (e.g., parent, co-worker) and

personally familiar places (e.g., bedroom, office) inside the

scanner in a retro-cue paradigm. In sum, we find that distinct

representations of familiar people and places take around

1 sec to develop and remain highly stable over time. These

results suggest that the neural mechanisms supporting self-

generated visualization and recall of familiar places and

people operate relatively slowly when under conscious con-

trol. However, a potential benefit of this sluggishness is that

the developed representations are highly consistent over

time, as evident by the high temporal generalizability of the

brain activation patterns over the duration of the recall period.
2. Materials and methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

2.1. Participants

Thirty-five healthy volunteers with normal or corrected-to-

normal vision took part in this study. Five participants were

excluded due to technical difficulties, MEG scanner malfunc-

tion, or incomplete recordings. Data from the remaining 30

participants (21 female, mean age 25.07, SD ¼ 3.50) were

included in all analyses throughout the study. Criteria for

participant inclusion were determined prior to data collection

according to the study population guidelines approved by the

NIH Institutional Review Board as a part of the study protocol

(93-M-0170, NCT00001360). All participants gave written

informed consent prior to participation in the study, and were

compensated monetarily for their time.

2.2. Stimuli

Cue stimuli consisted of the written names of 6 personally

familiar people (2 familymembers, 2 friends, 2 coworkers) and

6 personally familiar places (2 home, 2 public, 2 work). The

specific people and places included were provided by each

participant through completion of a survey prior to the start of

the MEG scan. Additionally, participants provided the length

of time she/he had known the provided people and places.

Participants were instructed to provide only people and places

that were highly familiar. For privacy concerns, we do not

include a full list of stimuli used. However, this list often

included first names and titles such as “mom” and business

names frequented by the participant.

https://doi.org/10.1016/j.cortex.2022.08.014
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2.3. VVIQ

Before the scan, participants completed the Vividness of

Visual Imagery Questionnaire (VVIQ) (Marks, 1973). Legal

copyright restrictions prevent public archiving of the VVIQ

which can be obtained from the copyright holders in the cited

references (Marks, 1973). The VVIQ is a 16-item questionnaire

in which participants rate how vividly they are able to visu-

alize specified prompts on a 5-point Likert scale (1¼ ‘No image

at all’; 5 ¼ ‘Perfectly clear and as vivid as normal vision’),

completed once with eyes open and once with eyes closed.

Scoreswere calculated by averaging the sum of eyes-open and

eyes-closed ratings.

2.4. Eye tracking

Eye position information was collected using the EyeLink 1000

Plus eye tracking system. Analyses were performed using two

channels of the CTF 275 system, which correspond to x and y-

positions of the pupil. Eye tracking control analyses are

described in Supplementary Materials A.

2.5. Memory recall task

During the memory recall task, each participant saw two cues

taken from the list of people and places they provided,
Fig. 1 eMEG cued recall experimental design and analysis pipeli

task. The cued stimuli for recall were people and places person

“1” or “2” indicated whether the participant should recall and vi

period. (b) Schematic of the steps in the multivariate of MEG an

across all sensors for every recalled person and place for each p
separated by a fixation cross (Fig. 1a). If the first cue was the

name of a person, the second cuewas the name of a place, and

vice versa. All stimuli were presented in the center of the

screen in white Arial type against a dark grey background,

using PsychoPy software (Peirce, 2007). Each of the cues was

presented on the screen for 800 msec, separated by a fixation

cross presented for 200 msec. Following the presentation of

both cues and a second fixation cross presented for 400 msec,

participants were presentedwith the number 1 or 2, whichwe

refer to throughout the rest of the article as the “retro-cue”

(Fig. 1a). The retro-cue was presented for 500 msec and was

used to indicate which stimulus should be recalled and visu-

alized following the offset of the retro-cue. The number “1”

indicated that the participant should recall and visualize the

item corresponding to the first cue presented in that trial, and

a “2” indicated that the participant should recall and visualize

the item corresponding to the second cue presented. The

recall period was the 4000 msec following the offset of the

retro-cue, during which a fixation cross was displayed on the

screen. Participants were instructed to visualize the specific

person or place cued as vividly as possible for 4000msec, until

the words “Get Ready” were presented on the screen, which

indicated that the next trial was about to begin. This retro-cue

paradigm was used to dissociate responses associated with

the perception of theword cues from the representation of the

person or place stimulus during the recall period. In order to
ne. (a) Trial sequence for one example trial in the cued recall

ally known to each participant. On each trial, the retro-cue

sualize the first or second cue during the subsequent recall

alysis pipeline used to extract the brain activation patterns

articipant.
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reduce anticipation effects, the “Get Ready” screen was pre-

sented for a variable time period, for either 2000, 3000 or

4000 msec, all of which were equally likely. Participants

completed 24 of these trials in each run, resulting in runs that

were just under 4 min long (232.8 sec). During each run, each

cuewas presented four times (twice in the first cue period, and

twice in the second cue period), and recalled/visualized two

times (once when presented in the first cue period and once

when presented in the second cue period). There were 8 runs

(192 trials) total, and each cue stimulus was seen a total of 32

times and recalled/visualized a total of 16 times. Including set

up, scan sessions lasted approximately 40 min.

2.6. Post-scan questionnaire

Immediately following the scan, participants completed a

questionnaire in which they rated how vividly they were able

to visualize each cued item from memory during the MEG

scan. The cues were listed in a randomized order and were

rated on a 4-point Likert type scale (1 ¼ not vivid at all;

4 ¼ extremely vivid). If the participant could not visualize that

stimulus during the scan they were instructed to check a box

on the questionnaire. However, all participants rated the

vividness of each cued stimulus between 1 and 4, and no one

chose to check the optional box.

2.7. MEG acquisition and preprocessing

DuringMEG recordings, participants were seated in an upright

position in an electromagnetically shielded MEG chamber.

Stimuli were presented using a Panasonic DLP projector

(model no. PT-D3500U, Panasonic) located outside of the

chamber, which projected stimuli through a series of mirrors

onto a back-projection screen in front of the participant. MEG

data were continuously recorded at a sampling rate of 1200 Hz

with a 275-channel CTF whole-head MEG system (MEG Inter-

national Services, Ltd., Coquitlam, BC, Canada) with synthetic

3rd gradient filtering automatically applied online during

acquisition. No other online filtering was applied. Recordings

were available from 272 channels (dead channels: MLF25,

MRF43, and MRO13).

We performedminimal preprocessing to keep MEG data in

its rawest form (Grootswagers et al., 2017). Data were pre-

processed using the FieldTrip (version 2, Oostenveld et al.,

2011) toolbox in MATLAB (version 2018b, The Mathworks,

Natick, MA). MEG triggers were temporally aligned to the

onset of the first cue in each trial presented on the screen

using an optical sensor attached to the projection mirror,

except in the case of one participant for whom the optical

sensor did not record. For this participant, trials were epoched

based on a trigger sent by the code at the onset of each

stimulus, with an additional lag of 50 samples (41.6 msec).

This lag time was determined by taking the average delay of

all other participants’ recorded data between the trigger sent

by the code and the presentation of the stimulus on the

screen, as recorded by the optical sensor. To bring all sensor

measurements on to the same scale, data were baseline cor-

rected by subtracting the mean activity in each channel from

the 500 msec prior to the onset of each trial (Hebart et al.,

2018), when no category information was available to
participants. Finally, in order to reduce computational load,

data were downsampled to 200 Hz. We did not perform any

other preprocessing steps or noise rejection in line with cur-

rent studies using minimal preprocessing for the multivariate

analysis of M/EEG data (e.g., Teichmann et al., 2021). The BIDS-

formatted raw and preprocessed data (Appelhoff et al., 2019;

Niso et al., 2018), and analyses code are available at the

following URL: https://osf.io/4wupe/.

2.8. Multivariate MEG decoding

All analyses were performed using functions from the CoS-

MoMVPA toolbox (Oosterhof et al., 2016) with additional

custom code written in MATLAB (The Mathworks, Natick,

MA). To determine if representations of people and places

from memory were distinct from each other, we first con-

ducted a classification analysis. Next, to see if it was possible

to differentiate individual stimuli within the people and place

categories, we performed a classification analysis on all

possible pairs of stimuli. Lastly, to understand how the neural

information changed over time, we ran a temporal general-

ization analysis.

2.8.1. Classification analysis
A regularized linear discriminant analysis (LDA) classifier was

trained to decode betweenwhole-brain patterns of MEG signal

across the 272 sensors at each time point of the trial individ-

ually (Fig. 1b). Using a leave-one-run-out cross-validation

approach, a classifier was trained to discriminate between

separate conditions at different time periods in the trial.

Specifically, we used the conditions at three time periods to

train the classifiers e the category of cue stimulus presented

as the first cue (either “person” or “place”), the number pre-

sented in the retro-cue time period (either “1” or “2”), or the

category of stimulus recalled and visualized in the recall

period (either “person” or “place”). To keep training and

testing data independent, all classifiers were trained on single

trials in 7 of the 8 runs and tested on the left-out run, resulting

in the accuracy at each time point (chance-level 50%). This

process was repeated until each of the 8 runs served as the

left-out run. The classifier accuracy for all 8 iterations was

then averaged to obtain the mean classification accuracy at

each time point across the trial. This time-resolved classifi-

cation was performed for each participant separately and

then averaged to find the mean classification accuracy across

all participants. To ensure that classification was not influ-

enced by training and testing on the same stimuli, we also

performed a 6-fold cross-validation classification scheme, in

which we trained on 5 of the 6 possible identities for both

people and places and tested on the left-out identity. There

was no noticeable difference between cross-validation

schemes, and therefore we only show the results of the

leave-one-run-out cross-validation approach.

2.9. Sensor searchlight analysis

In addition to the multivariate analysis across all sensors, we

also ran a sensor-searchlight analysis (Carlson et al., 2019;

Collins et al., 2018; Kaiser et al., 2016) to test whether observed

effects are primarily driven by specific sensor clusters. We ran

https://osf.io/4wupe/
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the same three analyses as outlined above, testing for infor-

mation about the cue, retrocue, and the recall category in the

signal. This time we used small clusters of nine MEG sensors

and projected the effects back onto topographical plots. This

analysis allows us to examine whether our effects can be

related to distinct spatial distributions of the effect.

2.10. Pairwise classification

A classifier was then trained to decode between all pairs of

stimuli (chance level 50%). We used a leave-one-run-out

approach, performed the classification analysis for each

participant separately, and then averaged to find the mean

classification accuracy across all participants at every time

point.

2.11. Temporal generalization analysis

To determine if the representations remained stable across

the trial period or if they changed, we performed a temporal

generalization analysis (Carlson et al., 2011; King & Dehaene,

2014). Testing whether the representational structure is

consistent across the trial allows us to observe if the distinc-

tion between people and places transitions as recall occurs, or

if the ability to distinguish people from places is stable across

the entirety of recall. Regularized LDA classifiers were trained

to discriminate between conditions at each individual time

point and tested on all other time points across the trial. First,

we used this approach to determine whether the representa-

tions elicited during the retro-cue period (1 or 2) generalized to

other time points in the trial. We then tested the generaliza-

tion of “person” or “place” recall and visualization information

to other time points in the recall period.

2.12. Statistical analysis

To assess whether classification accuracy is above chance

(alternative hypothesis) or at chance (null hypothesis), we

calculated Bayes Factors (Jeffreys, 1935, 1939) at each time-

point. Bayes Factors allow us to directly compare two hy-

potheses and represent a measure that indicates how

plausible each hypothesis is given the data (e.g., Ly et al.,

2016; Dienes, 2011, 2014, 2016; Keysers et al., 2020; Morey

et al., 2016; Wagenmakers et al., 2018). We used functions

of the Bayes Factor R package (Morey et al., 2015) imple-

mented in MATLAB (Teichmann et al., 2021) to run Bayesian

t-tests at each timepoint, testing whether the data is more

consistent with the alternative hypothesis (i.e., above chance

decoding) or the null hypothesis (i.e., at chance decoding).

We used a half-Cauchy prior with default, medium width of

.707. We adjusted the prior range of the alternative hypoth-

esis to .5 to infinity to allow for small effects under the

alternative hypothesis (Rouder et al., 2009). This was done to

account for potential differences between observed and

theoretical chance decoding (cf. Teichmann et al., 2021).

Bayes Factors that are larger than 1 represent evidence for

above chance decoding, whereas Bayes Factors that are

smaller than 1 indicate evidence for at chance decoding. The

strength of evidence is directly interpretable (e.g., a Bayes

Factor of 10 indicates that the alternative hypothesis is 10
times more likely than the null hypothesis). We did not

threshold the Bayes Factors and are interpreting the amount

of evidence at face value. No part of the study procedures or

analyses was pre-registered prior to the research being

conducted.
3. Results

Our main goal was to investigate the temporal dynamics

underlying self-generated recall of personally familiar people

and places. To do this, we measured the brain activation

patterns evoked during cued recall with whole-brain MEG.

First, we confirmed that participants were able to vividly

recall the stimuli during the task in the scanner as instructed

by examining their responses on the pre-scan VVIQ and the

post-scan recall vividness questionnaire. Previous in-

vestigations of visual imagery have used VVIQ scores above

40 as a conservative threshold for good visual imagery ability

(Bainbridge et al., 2021). Eyes-open and eyes-closed VVIQ

scores ranged from 40.5 to 76 out of a maximum of 80

(M ¼ 60.9, SD ¼ 8.79) indicating that all participants fell

within the expected range of good visual imagery ability.

Similarly, the mean recall vividness of the experimental

stimuli was 3.46 (SD ¼ .69) out of a maximum of 4, confirming

that participants were able to successfully visualize the

subject of their personalized recall prompts during the MEG

experiment. Places were reported as significantly more vivid

during recall when compared to people (places: M ¼ 3.57,

SD ¼ .68; people: M ¼ 3.34, SD ¼ .69; t (30) ¼ �2.17, p ¼ .0009;

d ¼ .33). Overall, these results suggest that participants were

able to vividly recall personally familiar people and places

during the MEG experiment as instructed.

Our first aim was to determine whether self-generated

representations of familiar people and places contained

category-specific information that could be decoded from

whole-brain MEG signals. To do this, for each participant and

time point, we trained an LDA classifier to discriminate be-

tween the patterns of neural signals evoked by recalling and

visualizing their personally familiar “people” versus “places.”

This produced a plot showing when category-selective infor-

mation could be decoded from the representation (Fig. 2a). As

expected, classifier performance was at chance in the early

stages of the trial when the cues and retro-cue were pre-

sented, as the participantwas not yet aware of which stimulus

to recall and visualize. During the recall period, differentiation

of people versus places emerged ~1000 msec after retro-cue

onset, and was then sustained for the remainder of the 4 sec

recall period. In a cluster from ~1500 to 3000 msec there was

only support for above chance and not at-chance decoding.

Notably, there was not a discrete peak in classifier perfor-

mance during the recall period as is typically found for

discriminating visual stimuli (Bankson et al., 2018; Contini

et al., 2021; Hebart et al., 2018; Wardle et al., 2020). Instead,

maximal decoding performance was sustained throughout

several seconds of the recall period. Additionally, control an-

alyses described in Supplementary Material A indicate little

evidence that eye movements impacted decoding accuracy.

These results show that distinct category-specific represen-

tations of recalled personally familiar items are relatively slow

https://doi.org/10.1016/j.cortex.2022.08.014
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Fig. 2 e Mean decoding accuracy from time-varying MEG activation patterns across the entire trial duration for decoding (a)

the category of the personally familiar item (people vs places) visualized during the recall period, (b) the identity of the

presented retro-cue as the written number “1” or “2,” and (c) the category (person or place) of the two written cues. In all

plots, colored dots beneath the time course indicate Bayes Factors (log scale) for each timepoint and the shaded area

represents standard error of the mean. Inset scalp topographies show multivariate searchlight decoding results in sensor

space (radius ¼ 9) averaged across all timepoints in the four time periods of interest (cue 1, cue 2, retrocue, and recall). The

sensor searchlight analyses for the cue and retrocue decoding indicate that these effects are primarily driven by posterior

sensors. For the recall analysis, we do not find a particular sensor cluster drove the effect.
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to develop, yet once formed they are maintained even over

several seconds of active free recall.

For comparison with the time course of recall decoding, we

also decoded the identity of the retro-cue (Fig. 2b) and the

category corresponding to the two cued stimuli on each trial

(Fig. 2c). Above-chance decoding of the identity of the retro-

cue as a “1” or a “2” was mostly confined to the retro-cue

period, beginning ~100 msec after onset of the retro-cue on

the screen, with a distinct peak at 145msec (Fig. 2b). Following

this peak, decoding accuracy for the retro-cue rapidly

declined, returning to chance around the time of the onset of
the recall period. Similarly, category decoding of “person” vs

“place” for the individualized word cues was confined to the

corresponding cue periods early in the experimental trial

when they were displayed on the screen (Fig. 2c). As expected,

category decoding of the word cues was not possible in the

recall period because of our counterbalanced design in which

the category information cued for recall was presented in each

cue period exactly 50% of the time. Together, these control

analyses show that, as expected, the word cues and numeric

retro-cue were only decodable from the MEG activation pat-

terns during the corresponding periods of the experimental

https://doi.org/10.1016/j.cortex.2022.08.014
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trial in which they were presented. In both cases, the onset of

decoding for these visual cues was relatively rapid with a clear

peak, in contrast to the recall decoding which exhibited a

gradual onset with sustained maximal decoding for several

seconds.

The above analyses demonstrate above-chance decoding

of recalled visualizations of personally familiar people and

places at the category level. Next, we explored the distinc-

tiveness of the recalled representations for the individual

stimuli within each category. To achieve this, we repeated the

decoding analysis at the exemplar level by training a separate

linear classifier for each pair of stimuli (e.g., “Ellie” and “Metro

Station”). Since stimuli were individualized for each partici-

pant, we grouped them as “people” or “places” and plotted

each within-category or between-category decoding time

course separately (Fig. 3). As expected, decoding for between-

category pairs (people vs places) was similar to the category-

level decoding analysis in Fig. 2a, with a gradual onset of

decoding that was sustained over the recall period (Fig. 3a). In

contrast, there was only spotty, inconsistent evidence for

above-chance decoding for within-category pairs (i.e., be-

tween two places or between two people, Fig. 3b and c).

The lack of strong evidence for above-chance decoding for

within-category pairs suggests that the representations of

individually recalled familiar people (and places) as reflected

in the MEG response are highly similar to each other. To

examine this further, we constructed 12 � 12 pairwise

decoding matrices at the exemplar level for four 1 sec time

periods during recall (Fig. 3d). This visualization confirms that

there is high similarity between exemplars of the same cate-

gory, and that similarity is greater than between exemplars of

different categories, which is particularly evident after the

first second of the recall period, once the representations have

stabilized.

Given that the recalled representations of familiar people

versus places were maintained for several seconds after their

formation (Figs. 2a and 3a), we were interested in how well

these representations generalized over time. One possibility

for the sustained decoding during the recall period is that the

representations of recalled people and places are relatively

stable. Another possibility is that the representations rapidly

evolve during active recall but maintain their distinctiveness

from each other at the category level. We performed a tem-

poral generalization analysis (training and testing classifiers

on MEG data from different time points during the recall

period) to distinguish between these possibilities (Fig. 4).

Strikingly, there was substantial temporal generalization for

decoding familiar people versus places during the recall

period, which extended over the majority of the 4 sec (Fig. 4a).

This suggests that the MEG activation patterns corresponding

to the recalled representations were highly stable, as a clas-

sifier trained and tested on MEG data from different time

points during the recall period could still successfully distin-

guish between whether the participant was recalling a

familiar person or a familiar place. In contrast, there was

limited temporal generalization for decoding the identity of

the retro-cue as a “1” or a “2” (Fig. 4b), as might be expected.

These results demonstrate that the recall and visualization of

self-generated representations involves a period of evolving

processing followed by a period of high generalizability.
4. Discussion

Here, we investigated the temporal dynamics of recalled

representations of personally familiar people and places using

multivariate pattern analysis of whole-brain MEG. We found

that above-chance decoding of the category of the recalled

item (as a person or a place) took several hundred millisec-

onds to develop, with category information emerging in the

neural signal approximately 1000 ms after the onset of the

retro-cue. Notably, these representations were highly stable

once developed, with sustained decoding for the remainder of

the 4 sec recall period. Additionally, there was temporal

generalization of the representations across the majority of

the recall period, indicating that these representations were

both stable and sustained rather than dynamic and rapidly

evolving. Overall, these results demonstrate that the recall of

highly familiar people and places is a complex process that

takes time to develop. However, once distinct representations

at the category level are formed, they are highly robust and

sustained even during several seconds of active recall.

The relatively slow latency of recall decoding we observe

here with MEG is consistent with the sequence of events

thought to underlie cued recall (Staresina & Wimber, 2019),

namely that, after pattern completion in the hippocampus,

the corresponding signal is projected to visual and parietal

cortex ~500e1500 msec after cue presentation to facilitate

memory reinstatement. In contrast, the decoding of visual

stimuli from whole-brain MEG generally has a much shorter

latency, consistent with fast processing of visual input (e.g.,

Bankson et al., 2018; Contini et al., 2021; Hebart et al., 2018;

Jafarpour et al., 2014; Wardle et al., 2020).

Interestingly, much faster latencies than observed in the

current study (~500 msec) have been reported for decoding

internal representations from MEG in the context of visual

imagery (e.g., Dijkstra et al., 2018) and cued associative

memory (Jafarpour et al., 2014). A key difference is that these

faster latencies occur in an experimental design which is

based on comparing perception versus imagery, and partici-

pants are forming mental imagery of experimental stimuli

that had been perceived moments before. This form of visual

recall would require the participants to retrieve and visualize

a specific image fromworkingmemory, similar perhaps to the

notion of “refreshing” the visual image (Johnson et al., 2007; Yi

et al., 2008).

In contrast, our free recall paradigm required participants

to actively generate representations of personally familiar

people and places in the absence of any immediate visual

stimuli reflecting those items. This is a more complex cogni-

tive task which likely engages additional neural mechanisms

outside of those serving visual working memory. Therefore, it

is unsurprising that we found a longer latency before repre-

sentations distinct enough to support category decoding were

formed. Additionally, it is possible that variable representa-

tions across participants and instances of recall also contrib-

uted to the relatively slow onset of decoding in the recall

period. We note that in our paradigm a relatively long recall

period (4 sec) was provided to participants to generate internal

representations of the cued stimulus. It is possible that rep-

resentations could develop more rapidly if participants were

https://doi.org/10.1016/j.cortex.2022.08.014
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Fig. 3 e Mean pairwise decoding from time-varying MEG activation patterns across the retro-cue and recall period for

decoding (a) between-category pairs (people vs places) of the personally familiar item visualized during the recall period, (b)

pairs of exemplars in which both stimuli were familiar people, and (c) pairs of exemplars in which both stimuli were

familiar places. Colored dots beneath these time courses indicate Bayes Factors (log scale) at each timepoint and the shaded

area represents standard error of the mean. (d) Mean pairwise decoding accuracies averaged within 1 sec blocks during the

4 sec recall period. Warm colors indicate higher decoding accuracy between exemplar pairs.
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given a more constrained recall period. However, we would

still expect the generation of representations frommemory to

have a longer latency than for recall of recently viewed items

in visual working memory if given the same recall period.

Finally, although is not possible to entirely rule out some
contribution from short-term memory in our paradigm as

participants recalled the same items multiple times and may

have held such representations in memory during the cue

period as the experiment progressed, it is clear that there are

important differences in the cognitive processes involved in

https://doi.org/10.1016/j.cortex.2022.08.014
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Fig. 4 e Temporal generalization for decoding (a) the category of the recalled personally familiar item (person or place) and

(b) the identity of the retro-cue as a written “1” or a “2” from MEG activation patterns. Left panels show decoding accuracies

with green hue indicating above chance classification accuracies. Right panels show the Bayes Factors for the decoding

time-generalization analyses. Warm colors indicate support for the alternative hypothesis (above chance decoding) and

blue colors indicate support for the null hypothesis (at chance decoding). The points on the diagonal represent training and

testing the classifier from MEG data at the same time point within the trial; off-diagonal points represent training and

testing on different time points (i.e., require generalization across time).
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picture recall versus the recall of personally relevant people

and places.

Previously, an fMRI study examined the cortical locus of

self-generated memory of people and places and found an

alternating pattern of selectivity in the medial parietal area

for the recall of people and places (Silson et al., 2019). This

was the case for both famous and personally familiar faces

and places, suggesting that self-generated recall of people

and places arises from spatially distinct, yet neighboring,
regions of the brain. Additionally, semantic information

about famous people and places was reported to be repre-

sented in distinct anterior temporal (people) and posterior

medial (places) networks, as well as in discrete clusters in

the hippocampus (Morton et al., 2021). Our results comple-

ment these findings by revealing the temporal dynamics of

recalled representations of personally familiar people and

places. We reveal a time course for when representations of

familiar people and places become reliably distinct and

https://doi.org/10.1016/j.cortex.2022.08.014
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demonstrate that these representations can be sustained

stably over time.

The majority of studies investigating high-level visual

processing use visual stimuli that are unfamiliar to the

participant or rely on famous stimuli (e.g., Tom Cruise, Eiffel

Tower) with which the participants are presumed to have

experience. Recently, there has been some evidence from

fMRI that the representation of visual objects that are

personally familiar differs from that for unfamiliar objects,

and that personally familiar objects may drive some individ-

ual differences in the structure of brain representations

(Charest et al., 2014). Similarly, Silson et al. (2019) found

stronger activation of areas in the medial parietal area for

personally familiar compared with famous people and places.

This effect of familiarity is likely to be much stronger for

memory-related processes like recall in comparison to more

perceptual processes. Together, these results suggest a com-

plex interplay between the role of personal experience and

individual differences in the neural processes involved in

recall.

While our findings reveal the temporal dynamics of recall,

the nature of the underlying representations is unclear. The

recall of personally familiar items is likely to be incredibly rich

and it is possible that the content (e.g., in terms of emotional

and semantic content, visualized features, etc.) and vividness

of these internal representations are variable both across in-

dividuals and across recall instances. However, while it is

possible that participants recalled different details about the

same person or place across trials in our experimental para-

digm, our results indicate that even if this was the case, there

remains a shared representation across these trials that is

robust enough to support category-level decoding of recalled

personally familiar people and places.

Additionally, our current paradigm may not have been

sufficiently powered to detect exemplar-level differences

within the same categories of these internal representations.

However, to our knowledge, within-category exemplar-level

differences in brain activation patterns for recalled visual

imagery have not previously been reported, and at least one

EEG study did not find any decoding of mental imagery

(Shatek et al., 2019). In order to gain a better understanding of

the underlying nature of these self-generated representations

constructed frommemory as well as to increase the likelihood

of identifying exemplar-level differences, it may be valuable

to give more detailed instructions as to how participants

should recall particular stimuli. Future studies may specify

whether recalled representations should be static vs dynamic,

focus on visual features vs semantic information, etc. to

develop a more complete understanding of this complex

process. Additionally, future work may seek to measure

variability in representation content and vividness across

trials using measures such as participant self-report or pupil

size, which has been shown to change as a function of imag-

ery vividness (Kay et al., 2022).

In sum, our data show that the representations of familiar

people and places can be decoded fromwhole-brain activation

patterns measured with MEG. The relatively slow onset of

decoding following conscious initiation of active recall sug-

gests that a complex and multifaceted neural mechanism is

engaged in this process. However, once formed, participants
are reliably able to keep these representations active and

coherent for a sustained period of time. The generalizability of

the category-specific activation patterns generated during free

recall over time points to a stable representation rather than

one that is dynamic and evolving. Taken together, our results

begin to disentangle the complexities of personally driven

memory and illustrate the stable and sustained nature of

these representations during recall.
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