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a b s t r a c t

Objects disappearing briefly from sight due to occlusion is an inevitable occurrence in

everyday life. Yet we generally have a strong experience that occluded objects continue to

exist, despite the fact that they objectively disappear. This indicates that neural object

representations must be maintained during dynamic occlusion. However, it is unclear

what the nature of such representation is and in particular whether it is perception-like or

more abstract, for example, reflecting limited features such as position or movement di-

rection only. In this study, we address this question by examining how different object

features such as object shape, luminance, and position are represented in the brain when a

moving object is dynamically occluded. We apply multivariate decoding methods to

Magnetoencephalography (MEG) data to track how object representations unfold over time.

Our methods allow us to contrast the representations of multiple object features during

occlusion and enable us to compare the neural responses evoked by visible and occluded

objects. The results show that object position information is represented during occlusion

to a limited extent while object identity features are not maintained through the period of

occlusion. Together, this suggests that the nature of object representations during dynamic

occlusion is different from visual representations during perception.
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1. Introduction

Movement of observers and objects inevitably leads to brief

interruptions of incoming visual information. Despite objec-

tively disappearing, our perception is of an object that con-

tinues to exist behind the occluder (Michotte, Thine,& Crabb�e,

1964), briefly going out of sight during occlusion. This has been

argued to be a distinct perceptual phenomenon from an object

that goes out of existence (Gibson, Kaplan, Reynolds, &Wheeler,

1969). For example, a bicycle that is temporarily occluded by a

car goes out of sight. In comparison, a burst bubble visually

ceases to exist. There is evidence that even infants perceive

that objects persist during occlusion (e.g., Aguiar &

Baillargeon, 1999; Baillargeon, 1993, 2008) suggesting that

this feat is a fundamental part of understanding our visual

world. However, it is unclear what the nature of the neural

object representation during dynamic occlusion is. Is it

detailed and “perception-like” with a distinctive representa-

tion of multiple object features such as shape, colour, and

texture? Or is it a more abstract representation that contains

information about general object features such as position

and motion direction only? Learning about the nature of ob-

ject representations during occlusion helps us understand

how sensory gaps are filled to produce a seamless perception

of the environment. Given the inherently dynamic nature of

occlusion it is important to use a method with high temporal

resolution. In the current study, we applied Multivariate

Pattern Analyses (MVPA) to Magnetoencephalography (MEG)

data to examine the nature of neural object representations

when moving objects go out of sight during occlusion.

The nature of object representations during occlusion has

been examined using a variety of approaches, with some ev-

idence suggesting that the representation during occlusion is

an abstract representation of the object's position only (e.g.,

Pylyshyn, 1989, 2004; Scholl & Pylyshyn, 1999). For example,

behavioural studies have shown that if a different object

reappears after occlusion than the object that was shown pre-

occlusion, the pre- and post-occlusion objects are perceived as

the same object whose features have changed (Burke, 1952;

Carey & Xu, 2001; Flombaum, Kundey, Santos, & Scholl, 2004;

Michotte et al., 1964). This suggests that object features such

as colour and shape might not be a primary feature of the

representation during occlusion. In contrast, the perception of

object persistence through occlusion is interrupted when the

object reappears with a delay or in an unexpected position

(Burke, 1952; Flombaum, Scholl, & Santos, 2009; Flombaum &

Scholl, 2006; Scholl, 2001, 2007; Scholl & Pylyshyn, 1999),

suggesting that the object's position over time is a critical

feature of the object representation that is maintained during

occlusion. Results from non-human primate electrophysi-

ology and human neuroimaging studies also present direct

evidence that position over time continues to be processed

during occlusion. For example, in non-human primates, ac-

tivity of motion sensitive neurons in the posterior parietal

cortex (Assad & Maunsell, 1995; Eskandar & Assad, 1999) and

the frontal eye fields (Barborica & Ferrera, 2003; Xiao,

Barborica, & Ferrera, 2007) has been found to persist when

an object is occluded. Similarly, regions of posterior parietal

cortex in humans, which are associated with processing
visual motion, have been shown to be active when a moving

object is occluded (Olson, Gatenby, Leung, Skudlarski, & Gore,

2004; Shuwairi, Curtis, & Johnson, 2007). Together, these

findings suggest that the object representation during occlu-

sion contains information about the object's position over

time which allows for extrapolation of motion paths.

Other studies, focussing on brain areas other than motion

sensitive areas, suggest there might be a richer object repre-

sentation during occlusion, containing information about

object shape, category and identity. For example, in non-

human primates, a small population of neurons in inferior

temporal cortex contains information about stimulus identity

during occlusion (Puneeth & Arun, 2016). In addition, these

neurons show ‘surprise’ signals when a different object

reappears after occlusion (Puneeth & Arun, 2016). Another

population of neurons in the banks of the anterior superior

temporal sulcus only responds when faces and bodies are

dynamically occluded (Baker, Keysers, Jellema, Wicker, &

Perrett, 2001). As neurons in this area are typically associ-

ated with processing stimulus motion and form, this suggests

an involvement in maintaining object identity representa-

tions during occlusion. Similarly, using functional magnetic

resonance imaging (fMRI) in humans, there is evidence for

object category-specific activation along the ventral visual

streamwhen an object is occluded, suggesting that perceptual

categories are maintained during occlusion (Hulme & Zeki,

2006). Finally, early visual cortex activation has been re-

ported during dynamic occlusion. This activation corre-

sponded to the occluded areas in the visual field, although this

activation was not modulated by object shape (Erlikhman &

Caplovitz, 2017). The data suggested that shape was repre-

sented in higher level areas such as the lateral occipital cortex

(LOC), which has previously been associated with object pro-

cessing (Grill-Spector et al., 1999; Halgren et al., 1999). How-

ever, as the temporal resolution of fMRI is poor, these

responses may have been partially driven by pre-occlusion

visual activation (Erlikhman & Caplovitz, 2017).

Since the temporal resolution of fMRI is low, it cannot

capture the inherently dynamic nature of object representa-

tions when objects are temporarily occluded. Electrophysio-

logical data from non-human primates are time-resolved, but

these methods often require that brain regions are selected a

priori, which makes it difficult to study representations of

different object features that are represented in distinct

cortical areas. Previous work on motion processing during

occlusion has focussed on motion-selective cortical areas and

work interested in object shape has focussed on shape-

selective cortical areas (e.g., Assad & Maunsell, 1995;

Puneeth & Arun, 2016). Thus, the nature of neural object

representations during occlusion considering multiple fea-

tures is still unclear.

The aim of the current work is to use MEG to enable a dy-

namic, temporally-specific analysis of the neural representa-

tions in the human brain during occlusion. In our experiment,

participants saw an object moving on a circular trajectory on

the screen. In some quadrants the object moved behind an

occluder. The object identity (shape and luminance) varied

across trials. While the object was moving on the screen, we

recorded MEG data which was used to examine what type of

information (e.g., shape, luminance, position) is represented

https://doi.org/10.1016/j.cortex.2022.04.009
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in the neural signal at a given time and how the object rep-

resentation unfolds when the object becomes dynamically

occluded. If object representations during occlusion are ab-

stract, only position information should be represented in the

neural signal during occlusion. Alternatively, if object repre-

sentations during occlusion are rich and “perception-like”,

shape and luminance should be represented throughout oc-

clusion in addition to position. In addition to the high tem-

poral resolution afforded by MEG, pairing MEG with MVPA

does not require a selection of specific brain areas or sensors,

allowing us to capture the combination of different object

features (such as motion and shape). Thus, the results of the

current study provide a deeper understanding of the nature of

object representations during dynamic occlusion and offer

new insights into how these representations are maintained

and modulated over time.
1 Please note that this section has been modified from the
preregistered design (see section 2.9 for details).
2. Method

To examine the nature of object representations during oc-

clusion, we examined how object shape, luminance, and po-

sition information unfold over time. We recorded neural

activity using MEG, while participants viewed an object

moving on a circular trajectory going in and out of sight in

different quadrants of the screen. We trained linear classifiers

on the neural data to differentiate between different shapes,

different luminance levels and different object positions at

each timepoint. Together, these approaches allow us to

investigate what type of information is represented when the

object is both visible and invisible, and how the representation

is maintained and modulated when the object is dynamically

occluded.

Position representations might be influenced by predict-

ability of the motion trajectory (Blom, Feuerriegel, Johnson,

Bode, & Hogendoorn, 2020) and potential eye movements.

Thus, we also recordedMEG datawhile participants viewed an

object appearing in unpredictable positions around the cir-

cular trajectory to examine position information independent

of predictable motion.

2.1. Participants

We collected data until we had useable datasets from 22

participants total. This sample size was based on a power

analysis of pilot data (see Section 5.7). We planned to continue

to collect data until we had evidence either for the null or the

alternative hypothesis for at least 50% of the timepoints. We

then planned to stop testing if the criterion was still not ful-

filled after collecting twice the estimated sample (i.e., 44 par-

ticipants). However, after 22 participants (5 male, 3 left-

handed, mean age ¼ 24.6 years), the data fulfilled the crite-

rion for all analyses of interest.

We measured head position with three marker coils taped

to the participant's head. We planned to exclude participants

whose cumulative head motion was more than two standard

deviations larger than that of the entire group. However, we

were unable to obtain continuous head motion data as the

hardware receiving the sensor input was broken and inter-

rupted MEG data collection. We therefore decided not to
exclude participants based on motion. Two participants were

excluded as they did not finish thewhole experiment. Another

two participants were excluded because of several in-

terruptions in the MEG recordings that could not be resolved

without technical support.1

Participants were asked for consent following the rules of

the National Institutes of Health (NIH) Institutional Review

Board as part of the study protocol 93-M-0170 (NCT00001360).

2.2. Apparatus

MEG data were recorded at 1200 Hz using a CTF 275 MEG

system (CTF Systems, Coquitlam, Canada) composed of a

whole-head array of 275 radial 1st order gradiometer/SQUID

channels housed in a magnetically shielded room (Vacuum-

schmelze, Hanau, Germany). Three of the sensors (MLF25,

MRF43, and MRO13) are broken in our system, so we were not

able to record from these sensors. Background noise was

removed online using synthetic 3rd gradient balancing. We

used MATLAB with Psychtoolbox (Brainard, 1997; Pelli, 1997;

Kleiner, Brainard, & Pelli, 2007) to present the visual stimuli.

To mark the relevant timepoints in each trial in real time, we

used parallel port triggers and the signal of an optical sensor

which detects light changes on the display and can thus be

used to account for temporal delays between the computer

and the projector. To record button-responses, a 4-Button

diamond response box (Current Designs, Philadelphia, USA)

was used. To track eye movement over the course of the

experiment, we used an EyeLink 1000 Plus Eye-Tracking Sys-

tem (SR Research, Ottawa, Canada). Eye movements were

mostly recorded from the left eye (for some participants we

were only able to track the right) with a sampling rate of

1200 Hz.

2.3. Stimuli

We used two abstract shapes (inverted U and inverted T) that

were presented at two different luminance levels (dark/black

and light/white). In addition, there was a third shape that was

a combination of the other two, but had black and white

horizontal stripes. This third shape was used as a target

stimulus (Fig. 1A). The shapeswere displayed on an unmarked

circular trajectory with a radius of ~3� visual angle from the

centre of the screen. We chose a circular trajectory for the

object motion to ensure that the object is equidistant from the

fovea at all times given differences in representations with

eccentricity. All stimuli were presented at a distance of ~75 cm

on grey background and subtended ~1� visual angle.

Throughout the experiment there was a white fixation dot

presented centrally and participants were asked to fixate on it

throughout the experiment.

2.4. Procedure

Participants completed 6 experimental blocks each

comprising a disappearance run (~3 min) followed by an un-

predictable position run (~80 s with a break in themiddle) and

https://doi.org/10.1016/j.cortex.2022.04.009
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Fig. 1 e Stimuli and experimental design. (a) shows all the stimuli. (b) shows the sizes of the stimulus, fixation cross and

radius of the (invisible) circular trajectory. (c) highlights the possible starting positions along the circular trajectory (blue

stars). From the starting positions, the object can move clockwise or counter-clockwise (black arrows). The object is

occluded in the first and the third quadrant (striped). Thus, the occluder position depends on the starting position. (d), (e),

and (f) show example trials for the occlusion, disappearance, and unpredictable position runs, respectively. The colour

indicates time: Blue highlights the positions of the object early in the trial whereas yellow shows positions later in the trial.

On the right-hand side, the top panel shows the position at a given time and the bottom shows howmuch of the stimulus is

visible at a given time. Please see video demonstrations for the true dynamic display in the supplementary files or here:

https://osf.io/hc25w/
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an occlusion run (~6 min). The run order within a block was

fixed. During occlusion runs, the object moved on a smooth,

circular, predictable trajectory and was occluded in two out of

four quadrants (section 2.4.1). In the disappearance run, the

object moved on the same circular trajectory but instead of

being occluded, the object grew to full size at the start posi-

tion, moved for one quadrant, and then shrank in size while

remaining in the same position, until it fully disappeared

(section 2.4.2). During unpredictable position runs, partici-

pants viewed a rapid presentation stream where the object

appeared in unpredictable positions on the circular trajectory

without predictable motion (section 2.4.3). These runs were

used to train classification algorithms for position decoding

(section 2.5.2). Fig. 1 shows the different trial types and video

demonstrations can be found on OSF: http://doi.org/10.17605/

OSF.IO/HC25W.

2.4.1. Occlusion runs
In the occlusion runs, participants were instructed to fixate

centrally on a fixation dot while monitoring the shape that

moved smoothly along the unmarked circular trajectory

(Fig. 1B). Initially, at the starting position for each trial, the

stimulus was drawn behind an occluder and then appeared

dynamically as it crossed into the first quadrant. It was fully

visible in the first quadrant before it crossed into the second

quadrant where it was dynamically occluded. It then gradu-

ally re-appeared and was visible again in the third quadrant.

Finally, at the end of the trial, it dynamically disappeared

again as it passed back into the fourth quadrant. Stimulus

movement could start at one of four possible positions (45�,
135�, 225�, and 315�) and finished at the same position. From

the starting position the stimulus could move around the

trajectory in a clockwise or counter-clockwise direction.

During themovement, the stimulus remained in each position

on the trajectory for 33.3 ms before being shown in the sub-

sequent position. The circular trajectory consisted of 64

possible positions. Stimulus identity, starting position, and

movement direction were counterbalanced within each run.

The occluders had the same colour as the background so the

visual display during occlusion was identical across trials,

regardless of the position of the occluders.

In total, there were 96 occlusion trials plus between 14 and

19 target trials (randomly sampled from a Gaussian distribu-

tion). On target trials, the striped target object appeared at

three consecutive stimulus positions (100 ms total) in place of

the stimulus. Participants were asked to press the response

button as quickly as possible once they spotted the target

stimulus. Feedback about whether a target was detected or

missed was provided after each target trial. The target detec-

tion task was used to keep participants attentive and target

trials were excluded from the analyses. Each occlusion run

lasted approximately 6 min.

2.4.2. Disappearance runs
The disappearance runs were the same as the occlusion runs

except for the following differences. First, the object did not
gradually appear from behind an occluder, but it instead grew

gradually in size before the motion started. Second, when the

object touched the occluder in the second quadrant, it grad-

ually shrank, inducing a perception of disappearance. Third,

the object did not re-appear after it had disappeared and the

trial ended after 1.2 s. Importantly, the speed of growing and

shrinking of the object matched the speed at which it was

occluded in the occlusion runs. Thus, the disappearance runs

can serve as a control condition for the occlusion runs, to rule

out that potential effects during occlusion are driven by the

stimulus offsets or the time period when the object was

visible. There were the same number of trials in the disap-

pearance runs as the occlusion runs and the task was

identical.

2.4.3. Unpredictable position runs
Participants also completed an unpredictable position run in

which the stimuli were presented in a rapid stream at

different positions around the circular path, but in random

order. The unpredictable position presentations allow us to

examine position information independent of motion. In

addition, the use of the unpredictable position presentations

allows us to isolate position effects from any influence of eye

movements.

Participants were again instructed to fixate centrally while

the stimuli were flashing around the circle. Each stimulus was

shown for 33.3 ms with an inter-stimulus-interval of 100 ms.

Participants saw two consecutive rapid streams of unpre-

dictable position trials, each containing 256 stimulus pre-

sentations. In addition, either one, two or three striped target

stimuli were shown to keep participants engaged. Participants

were asked to press the response button as soon as they saw a

target stimulus. Feedback about target detection accuracy and

reaction time were provided to the participant at the end of

each stream. The target presentations were not included in

the analysis. As the stimulus presentation is very brief, we

assume that the neural response of several stimulus pre-

sentations will overlap (Grootswagers, Robinson, & Carlson,

2019; Grootswagers, Robinson, Shatek, et al., 2019; Marti &

Dehaene, 2017; Mohsenzadeh, Qin, Cichy, & Pantazis, 2018;

Robinson, Grootswagers, & Carlson, 2019). Thus, to ensure

that the target presentations did not affect the data collected

from the previous and following stimulus presentation, we

included an additional seven filler stimulus presentations

before and after the target presentation which were not ana-

lysed. In total there were 271e301 stimulus presentations

(depending on the number of targets) in each unpredictable

position stream, which took approximately 40 s to complete.

2.5. MEG analyses

2.5.1. Preprocessing
We followed a minimal pre-processing approach for the MEG

dataset (as outlined here: Grootswagers, Wardle, & Carlson,

2017). Using FieldTrip (Oostenveld, Fries, Maris, &

Schoffelen, 2011), we downsampled the data to 240 Hz. We

http://doi.org/10.17605/OSF.IO/HC25W
http://doi.org/10.17605/OSF.IO/HC25W
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epoched the occlusion trials from �200 to 2000 ms, the

disappearance trials from �200 to 1000 ms, and the unpre-

dictable position presentations from 0 to 300 ms relative to

stimulus onset. In the occlusion and disappearance runs,

timepoint 0 reflects the time when the stimulus is first visible.

For the unpredictable position presentations, the epochs

contain the presentation of several stimulus onsets. Our pilot

data, whichwere recorded on a different MEG system, used an

online bandpass filter from .03 Hz to 200 Hz. To match this

closely, we used a low-pass filter of 200 Hz. As high-pass filters

are known to cause issues for multivariate time-series ana-

lyses (van Driel, Olivers, & Fahrenfort, 2021), we instead used

robust linear detrending with trial masking combined with

baseline correction. For two participants therewere very short

MEG artefacts (complete signal dropout lasting around 100ms)

which means we had to exclude one trial for each participant

from the analysis.2

2.5.2. Classification analyses
We used time-resolved multivariate analyses for our MEG

data, which allowed us to test what type of information is

represented in the neural signal while the objects are moving

along the circular trajectory (Fig. 2). We examined whether

there is information about shape, luminance, and position

while the object is fully visible, partially occluded, and fully

occluded. Examining the time-course of the object feature

representations in the signal provides a unique opportunity to

track the maintenance and transition of object representa-

tions during dynamic occlusion. Each of the different analyses

is laid out in detail below (Sections 2.1).

We used the CoSMoMVPA toolbox (Oosterhof, Connolly, &

Haxby, 2016) to run the time-resolved multivariate analyses.

We extracted patterns of brain activity across all 272 MEG

sensors at each timepoint, separately for each participant. To

distinguish between activation related to the condition of in-

terest (e.g., stimulus shapes; Fig. 2a and b), we trained a reg-

ularised linear discriminant analysis (LDA) classifier on all but

one block of trials (Fig. 2c) and then tested the classifier's
performance on the left-out block (independent data; Fig. 2d).

Above chance classification accuracy at a certain timepoint

indicates that the neural data contains information about the

different conditions. We used temporal-generalisation

methods (Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011;

King&Dehaene, 2014) to examinewhether there are recurrent

activation patterns over time, that is, whether an activation

pattern observed at one timepoint is observed again at a later

timepoint. Generalisation off the diagonal in the temporal-

generalisation matrix is driven by overlap in the activation

pattern at two different timepoints, and therefore implies that

the activation pattern recurred. Temporal-generalisation al-

lows us to examine such potential overlaps in representation

over time. For example, the shape representation may be

similar when the object is visible and when it is occluded. To

test this, we trained the classifier at one timepoint and tested

it at all other timepoints in the timeseries. This approach re-

sults in timeetime decoding matrices in which each cell
2 Please note that this section has been modified from the
preregistered design (see section 2.9 for details).
corresponds to a classification accuracy at a unique training-

and testing-timepoint combination (Fig. 2e).

We also ran sensor-searchlight analyses (Carlson,

Grootswagers, & Robinson, 2019; Collins, Robinson, &

Behrmann, 2018; Kaiser, Oosterhof, & Peelen, 2016) to

examine the spatial distribution of observed effects. For this

analysis, we ran the same analyses as outlined above across

small clusters of 9 MEG sensors and projected these back onto

topographical plots. These topographical plots may show

whether the effects are primarily driven by specific sensor

clusters. For the shape and luminance decoding, we ran the

sensor-searchlight for the diagonal of the timeetime decoding

matrices. For the position decoding, we ran the sensor-

searchlight analysis for three testing timepoints which were

selected based on the pilot data (80 ms, 120 ms, 160 ms). After

training on each of these timepoints, we ran the sensor-

searchlight across time for the occlusion and disappearance

trials. We did not test any specific hypotheses with regard to

the spatial distributions of the effects and therefore did not

run any statistical tests on the results. Instead, the sensor-

searchlight analyses are shown alongside the timecourse re-

sults which are the main focus of this study.

2.5.2.1. SHAPE REPRESENTATION. Decoding the object shape, we

tested whether there is position-independent shape infor-

mation in the neural signal during occlusion. Furthermore, we

used temporal-generalisation methods to test whether the

time-course of shape processing during occlusion is similar to

shape processing of visible, moving objects.

To test for shape-specific information in the signal, we

trained a classifier to distinguish between trials in which

Shape 1 was shown from trials in which Shape 2 was shown.

Then we tested whether the classifier could predict the shape

that was shown for each trial in a set of left-out trials. Above

chance decoding indicates that shape information is present

in the neural signal, providing insights into the time-course of

shape processing of moving objects that are not visible. We

used an 18-fold cross-validation for all but two participants

(due to excluding one trial for each, we ran those participants

with a 17-fold cross-validation). Overall, there were six blocks

of 96 trials each. Within each block, each unique trial combi-

nation (shape x luminance x starting position x movement

direction) repeated three times. We trained the classifier on

data from 544 trials, leaving out one set of the unique trials at

a time (32 in total). We report the overall shape decoding ac-

curacy as well as the accuracy for different starting positions

and movement directions to assess whether shape represen-

tations were influenced by position. Above chance decoding

accuracy means that there was an abstract shape represen-

tation in the signal at a given time.

Running the shape analysis on the occlusion trials allows

us to compare shape activations before, during and after oc-

clusion. If, for example, the shape representation evoked by

the initial stimulus presentation pre-occlusion is similar to

the shape representation post-occlusion, we should see above

chance decoding off the diagonal of the temporal-

generalisation matrix. That would suggest that there is evi-

dence of recurring information at different timepoints (cf.

King & Dehaene, 2014). Similarly, if shape representations are

similar when the object is visible and when it is occluded, we

https://doi.org/10.1016/j.cortex.2022.04.009
https://doi.org/10.1016/j.cortex.2022.04.009


Fig. 2 e Classification across time. We recorded continuous MEG data while the stimulus was moving on the circular path

around the fixation dot (a and b). At each timepoint, we extracted the activation pattern across all MEG channels (c, only two

sensors shown for simplicity) and trained a classifier (red line) to distinguish between the different trial types (here black

versus white). Then we extracted the sensor activation patterns for independent testing trials (cross-validation) and tested

how often the classifier can predict the feature of interest correctly (d). We then used statistical tests to assess at which

training- and testing-timepoint combinations the classifier can predict the feature of interest above chance (e). If there is

above-chance decoding off the diagonal (white dashed line), information present in the signal at earlier timepoints is

reactivated later. (f) shows how the different timeetime matrices are combined in order to test for above-chance

classification statistically.
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should be able to cross-generalise between the timepoints of

these different phases of the trial. Alternatively, above chance

decoding on the diagonal indicates that a unique shape rep-

resentation occurs at every phase of the trial. Thus, this

analysis allows us to probe directly whether shape informa-

tion during occlusion is perception-like.

Any shape-specific activation observed during occlusion

might be driven by the time period prior to occlusionwhen the

shape was visible. To test for this possibility, we ran the same

analysis on the disappearance runs to see whether shape-

specific activation in the absence of visual stimulation is

unique to occlusion or whether it also occurs when an object

disappears.

2.5.2.2. LUMINANCE REPRESENTATION. We also tested whether

luminance information is present in the neural signal during

occlusion and whether the time-course of luminance pro-

cessing during occlusion is similar to luminance processing of

visible objects in motion. We ran the same analyses as the

shape decoding analyses (2.5.2.1) but trained the classifier to

distinguish between trials in which dark and light stimuli

were shown. We ran this analysis in the same way as the

shape decoding analysis with an 18-fold cross validation (17-

fold for two participants), relying on the fact that the stim-

ulus characteristics are counterbalanced within each block. In

addition to overall decoding accuracy, we reported decoding

accuracies for the different starting positions and motion di-

rections. Timepoints with above chance decoding provide

evidence for luminance information in the neural signal. This

gives us the opportunity to test whether luminance informa-

tion is present in the neural signal when objects are dynam-

ically occluded. In addition, luminance-specific activations

before, during and after occlusion can be compared in the

same way as for shape decoding.

Again, to test whether luminance-specific activation dur-

ing occlusion might be driven by the time period when the

stimulus was visible, we ran the same analysis on the disap-

pearance trials. This allows us to test whether luminance-

specific activation in the absence of visual stimulation is

unique to occlusion or whether it also occurs when an object

disappears.

2.5.2.3. POSITION REPRESENTATION. We examined whether posi-

tion information is represented in the neural signal during

occlusion. The position analyses are not straightforward as

the position and time are linked: If we look at trials where the

object moved in clockwise and counter-clockwise directions

separately, the object can only be in four possible positions at

a given time. That means that a time-resolved decoding

approach is restricted to a four-way classification problem. For

the position analyses outlined below, we trained a classifier to

use the MEG data to predict where the stimulus is, given four

possible positions at a specific time.

2.5.2. POSITION WITHIN-DECODING ANALYSIS. For3 the position

within-decoding analysis, we split the trials by movement

direction (clockwise and counter-clockwise) and trained the

classifier to distinguish the stimulus position at each
3 Please note that the analysis name was changed (see section
2.9 for details).
timepoint. As there were four starting locations, the stimulus

could be in one of four positions at each timepoint. We then

ran the analysis in a four-way fashion, distinguishing between

all possible positions at every timepoint. Above chance

decoding in this analysis indicates that there is information

about the quadrant in which the object is at a given time. In

addition to decoding accuracies, we report confusionmatrices

for the diagonal of the timeetime matrix, showing the error

patterns of the predictions. Given that the occluder is the

same colour as the background, above chance position

decoding can only be driven by the perceived position of the

object at a given timepoint. If we had chosen to make the

occluder visible, we would not be able to disentangle whether

we are decoding the position of the occluder or the position of

the object at a given timepoint.

One drawback of the position within-decoding analysis is

that it is susceptible to eye-movement artefacts. Tracking of

the moving object or even consistent (micro-)saccades to-

wards the object's position can have an effect on the MEG

signal (Quax, Dijkstra, van Staveren, Bosch, & van Gerven,

2019). Above chance decoding of object position from the

MEG signal could thus be (at least partially) driven by eye

movements. Note that this issue is unique to the position

decoding analysis, as the different shape and luminance

conditions are not likely to cause different patterns of eye-

movements. In addition, shape and luminance information

were decoded across positions. To examine whether the po-

sition decoding effects could be driven by eye movements, we

ran a control eye tracking analysis (see section 2.6 below). We

also ran a cross-decoding analysis between the unpredictable

position streams and the occlusion runs for position infor-

mation, an analysis in which eye movements have much less

potential influence.

2.5.2.3.2. POSITION CROSS-DECODING ANALYSIS. For the position

cross-decoding analysis, we used the unpredictable position

streams to train the classifier to distinguish between brain

activation patterns associated with the object being in a given

position. We then tested whether the classifier, trained on the

unpredictable position data, can reliably predict object posi-

tion in the occlusion (and disappearance) trials. In the un-

predictable position streams, consistent eye movements are

unlikely because there was no way for the participant to

predict where the stimulus would appear. In addition, eye

movements have been shown to affectMEG data ~200ms after

lateralised stimulus onset (Quax et al., 2019) whichmeans that

the brief presentation durations used in the unpredictable

position streams (33 ms þ 100 ms inter-stimulus-interval) are

unlikely to lead to consistent eye movements.

As there is no predictable motion in these trials, the tem-

poral dynamics of position information might be different in

comparison to the occlusion trials. It is, for example, possible

that position information is accessed earlier when an object

follows a predictable motion path in comparison to when it

appears in random positions. To capture these potentially

different dynamics, we ran the position decoding analysis

across time (temporal-generalisation). Since the object is

moving in the occlusion trials, we were not able to assign a

single position label to the entire trial but ratherwe broke each

occlusion trial up into single presentation durations (33.3 ms

each). We thenmerged the classification accuracies in each of

https://doi.org/10.1016/j.cortex.2022.04.009
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these small epochs back together to cover the entire presen-

tation duration of a single trial (�200 e 2000 ms). Note that at

each timepoint in the occlusion trial, the stimulus can only be

in one of four possible positions (chance decoding is 25%). To

capture the error patterns, we report the confusion matrices

using three different training timepoints (80 ms, 120 ms, and

160 ms) which were chosen based on the pilot data.

Both the position within-decoding and cross-decoding

analyses provide novel information about the time-course of

position processing for moving objects that are going through

brief periods of occlusion. In addition, it is possible that the

time-course of position processing is influenced by predict-

ability. The position decoding analyses allow us to test this by

comparing phases of the trial where stimulus position is

predictable (i.e., post-occlusion) and when it is unpredictable

(i.e., initial appearance of the stimulus). In addition, we are

able to differentiate between position-specific activation

when the object is invisible due to occlusion (i.e., the stimulus

is out of sight) versus disappearance (i.e., the stimulus ceased

to exist).

The key difference between the position within- and cross-

decoding analyses outlined above is that in the within-

decoding analysis, the classifier is trained and tested on the

occlusion/disappearance trials, while in the cross-decoding

analysis, the classifier is trained on the unpredictable posi-

tion streams and tested on the occlusion/disappearance trials.

The cross-decoding analysis aims to identify position infor-

mation in the signal that is independent of motion or pre-

dictability and hence unlikely to be driven by eyemovements.

However, it is possible that the neural signature for stimuli

with an immediate onset is very different from smoothly

moving and predictable stimuli, making cross-generalisation

between these two different trial types difficult. Therefore,

both of these analyses are valuable in different ways and

should be interpreted together.

2.6. Eye tracking analyses

Eye movements are a potential confound for the position

within-decoding analysis. To test for an influence of eye

movements, we ran the same position within-decoding

analysis used for the MEG data on our eye tracking data. We

trained the classifier to distinguish between the different po-

sitions at each timepoint but this time using only the X- andY-

coordinates of the eye tracking data. We used mutual infor-

mation analyses (Quax et al., 2019) to examine at which

timepoints eye movements are a potential problem for our

MEG analyses. For the mutual information analysis, we

determined which positions the classifier predicts at each

timepoint in the occlusion trials when it is trained on the MEG

data and the eye tracking data, and then tested whether there

is mutual information between the eye tracking and the MEG

data. Above-chance decoding at timepoints with mutual in-

formation have to be interpreted with caution.

2.7. Statistical inference

We used Bayes Factors (Dienes, 2011; Good, 1979; Kass &

Raftery, 1995; Morey, Romeijn, & Rouder, 2016; Rouder,

Speckman, Sun, Morey, & Iverson, 2009; Wagenmakers,
2007) to determine the evidence for above-chance decoding

(i.e., alternative hypothesis) and for chance decoding (i.e., null

hypothesis) at every timepoint.

We used a hybrid one-sided Bayesian test (Morey& Rouder,

2011), testing against a point-null of effect size 0 (chance

decoding) that deems small positive effect sizes as irrelevant.

We used a half-Cauchy prior for the alternative hypothesis

with a default, medium width of r ¼
ffiffi

2
p
2 ¼ 0:707. We defined

the standardized effect sizes to occur under the alternative to

be in a range between .5 to infinity, capturing directional

(above chance) medium sized effects (Morey & Rouder, 2011).

Additionally, we ran a robustness check, testing whether the

observed effects remain when we choose a wide (r ¼ 1) and

ultrawide (r ¼ √2 ¼ 1:414) scale for the prior width. Our

chosen prior distribution assumes that a wide range of effect

sizes is possible but that medium effect sizes are more likely

(Keysers, Gazzola, & Wagenmakers, 2020). We used the Bayes

Factor R package to calculate the BFs (Morey, Rouder, Jamil, &

Morey, 2015) implemented within Matlab (Teichmann,

Moerel, Baker, & Grootswagers, 2022).

Bayes Factors (BFs) that are smaller than 1 indicate that

there is more evidence for the null hypothesis (chance and

below-chance decoding) in the data than for the alternative

hypothesis (above chance decoding), whereas BFs that are

larger than 1 indicate that there is more evidence for the

alternative hypothesis than for the null hypothesis (Dienes,

2011). Here, we used the BF cut-off of 6 and interpret this as

substantial evidence for above chance decoding (Wetzels et al.,

2011). BF smaller than 1/6 will be used as evidence for the null

hypothesis which indicates that decoding is around chance.

In addition to decoding accuracies, we also looked at

decoding latencies. To do this, we examined the time period of

peak decoding by sub-selecting a different set of decoding

timeseries from the participants 10,000 times and then

calculated the 95% confidence interval for the peak latency.

These bootstrapped peak confidence intervals for each phase

of the trial (pre-occlusion, occlusion, and post-occlusion) give

the opportunity to directly compare the time at which we can

best decoding shape, luminance, and position.

2.8. Transparency and openness

The raw and preprocessed data for this study can be found on

OpenNeuro (http://doi.org/doi:10.18112/openneuro.ds004011.

v1.0.1). All analysis codes were uploaded to OSF (https://osf.io/

hc25w/). The accepted stage 1 submission for this registered

report can be found on OSF (https://osf.io/tp2ad).

2.9. Changes to the pre-registered study

1) We used a different MEG system for the pilot and for the

main experiment. We made the following changes to the

planned pre-processing of the MEG experiment data to

match pre-processing as closely as possible to the pilot.

The MEG system that was used for the pilot study auto-

matically applied an online low-pass filter at 200 Hz. We

applied a 200 Hz low-pass filter to the experiment data to

keep this consistent with the pilot dataset. The pilot MEG

system also applied an online high-pass filter. However,

https://osf.io/hc25w/
https://osf.io/hc25w/
https://osf.io/tp2ad
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high-pass filtering can distort results in decoding studies

(van Driel et al., 2021). To match the MEG data as closely as

possible between the experiment and pilot, without relying

on high-pass filtering, we used robust linear detrending

with a baseline correction (see section 2.5.1).

2) We encountered the following problems during data

collection. First, we were not able to use continuous head

motion tracking due to broken hardware. Instead, we

monitored participants closely and recorded coil positions

after every run (see section 2.1). In addition, there were two

instances of very brief (<100 ms) MEG signal dropouts. We

removed the two affected trials from the data analysis.

3) We made the following changes for clarity. First, we

changed the labelling of the selected time window. In the

pilot data, the stimulus did not emerge gradually so 0 ms

referred to the trial start as well as the time that the

stimulus first became visible. In the main experiment, we

initially proposed to set 0 ms to the trial start. However,

because the stimulus emerged gradually from behind an

occluder, the object then became visible at ~200 ms. To

match the convention of referring to the stimulus onset as

0ms,we now refer to 0mswhen the stimulus first becomes

visible. Note that the epoch is the same as proposed, only

the label of 0 ms has changed for clarity (see section 2.5.1).

In addition, we renamed the “quadrant analysis” to “posi-

tion within-decoding”, to better clarify the difference with

the “position cross-decoding” analysis (see section 2.5.2.3).

Finally, we removed a sentence about regression analysis

that was in the stage 1 manuscript by mistake.

4) In response to the reviewers' comments, we added an eye

tracking analysis using the X- and Y-coordinates from the

unpredictable position runs to predict the responses dur-

ing the occlusion and disappearance runs. This analysis

was used to examine the potential effect eye movements

could have on the position cross-decoding analysis.
3. Results

In this study, we used MVPA on MEG data to investigate

whether object representations during occlusion are rich and

perception-like or abstract. Our results show evidence for

object shape, luminance, and position information when the

object was visible. However, evidence for luminance and

shape information was weak during occlusion, and position

information was only maintained for the initial occlusion

period. We outline the results for each analysis in detail

below.

As outlined in the methods section, we used Bayes Factors

to statistically assess the decoding results. While we used

three different common prior widths (medium, wide, ultra-

wide) to assess for robustness of our results, we here report

only the BFs for the default, medium width prior, as the

different prior widths did not affect the results. Bayes Factors

for all analyses and prior widths can be found on OSF.

3.1. Shape representation

We examined the time-course of position-independent shape

information before, during, and after occlusion (see Fig. 3A,
row 1). There was position-independent shape information

before and after occlusion e when the object was visible.

During occlusion, there was information about the object

shape for some timepoints, but most timepoints showed evi-

dence for the null hypothesis (i.e., chance decoding of shape).

To assess whether shape representations were influenced by

position,we determined the shape decoding separately for the

different positions (i.e., different start positions and move-

ment directions), and then averaged the decoding accuracies

across the different positions. The results were similar to the

position-independent shape decoding: There was some shape

information before and after occlusion (see Fig. 3A, row 2).

Some timepoints showed evidence for position-dependent

shape decoding during occlusion, although most timepoints

showed evidence for the null hypothesis (i.e., chance decod-

ing). The sensor searchlight analysis indicated that the shape

decoding during the visible periods is mostly driven by pos-

terior sensors.

We used temporal-generalisation methods to determine

whether the position-independent shape information was

similar before, during and after occlusion (Fig. 3A, row 3 shows

decoding accuracies and row 4 shows Bayes Factors). The re-

sults show off-diagonal shape generalisation in decoding for

the object before and after occlusion. This shows that the

neural pattern evoked by the shape of the object is similar for

these different points in time. The shape decoding during

occlusion did not generalise to decoding before and after oc-

clusion, suggesting the neural pattern during occlusion was

different to that evoked by the shapes during perception.

Feature representations during occlusion could be driven

by perpetuation of feature-specific activation during the time

prior to occlusion, which would not be unique to occlusion.

Our disappearance condition provides a control to test for

occlusion-specific effects. We therefore repeated the same

analyses described above for the disappearance condition.

Overall, the results were very similar for the disappearance

and occlusion condition. There was position-independent shape

information before disappearance and weak evidence for

shape decoding for some timepoints after the shape had dis-

appeared, but most timepoints after disappearance supported

the null hypothesis (see Fig. 3B, row 1).We examined evidence

of position-dependent shape information by determining shape

decoding separately for the different positions and found that

there was position-dependent shape information before the

stimulus disappeared (see Fig. 3A, row 2). In addition, there

was evidence for position-dependent shape information after

the stimulus disappeared for some timepoints. The temporal-

generalisation data showed that visible position-independent

shape information did not generalise to the time after the

stimulus disappeared (see Fig. 3B, rows 3 and 4).

3.2. Luminance representation

In addition to shape information, we examined whether

there was luminance information in the signal. Overall, the

signal for luminance decoding was stronger than that of

shape (see Fig. 4). We found evidence for position-

independent and position-dependent luminance informa-

tion before and after occlusion which was mostly driven by

posterior sensors (see Fig. 4, rows 1 and 2). In addition, there

https://doi.org/10.1016/j.cortex.2022.04.009
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Fig. 3 e Shape decoding results for the occlusion (A) and disappearance (B) conditions. A) Shape decoding for the occlusion

condition. Black dashed lines are used throughout to indicate the timepoints when the object is visible or invisible, with the

object being partially visible in between these times. Row 1 shows the time-series of shape decoding along the diagonal (i.e.,

for the same training and test timepoint). Theoretical chance is 50% decoding accuracy. The black line shows the mean

decoding accuracy over time (temporally smoothed with a kernel of 5 timepoints for plotting clarity only). Shaded error bars

around the black line indicate the standard error of the mean. We calculated the bootstrapped peak times separately for the

time windows before occlusion, during occlusion, and after occlusion. The 95% confidence intervals of the bootstrapped

decoding peak times are the grey bars displayed below the decoding accuracies. We obtained time-varying topographies from

the channel-searchlight analysis, and averaged across all timepoints before occlusion, during occlusion, and after occlusion.
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was some evidence for above chance position-independent

luminance decoding during occlusion. In contrast, position-

dependent luminance decoding was at chance during occlu-

sion which may be due to the fact that fewer trials were used

to train the position-dependent luminance classifier (see

methods). The temporal-generalisation analyses showed that

the position-independent shape information was similar

before and after occlusion as indicated by off-diagonal

generalisation of luminance decoding (Fig. 4A, panel rows 3

and 4). However, the neural pattern evoked by the object

luminance when the object was occluded did not generalise

to when it was visible, indicating that there is a difference in

luminance representation when the object is visible and

invisible.

We investigated whether luminance decoding during oc-

clusion could be driven by lingering activation from the time

prior to occlusion by repeating the analyses for the disap-

pearance condition. We found evidence for luminance decod-

ing when the object was visible (see Fig. 4B, rows 1 and 2). In

addition, there was evidence for luminance decoding after the

object had disappeared, suggesting the luminance decoding

found during occlusion might not be driven by the occlusion

process, but rather by general offset effects. The temporal-

generalisation showed no evidence for generalisation from

when the stimulus was visible to when it was invisible (see

Fig. 4B, rows 3 and 4).

3.3. Position representation

3.3.1. Position within-decoding analysis
To investigate whether the position of the object is repre-

sented before, during, and after occlusion, we ran the position

within-decoding analysis. We split the data by movement

direction for this analysis, whichmeans the object could be in

one of four possible positions at any given time. For the oc-

clusion task, there was information about the quadrant in the

signal when the object was visible and invisible (Fig. 5A, row

1). A sensor searchlight showed that the position decoding

was mostly driven by posterior sensors (Fig. 5A, row 1).

Decoding accuracies were highest along the diagonal and

during the visible period (before and after occlusion), but there

was a clear spread to neighbouring timepoints (Fig. 5A, rows 2

and 3). Position information did not generalise between the

time before and after occlusion and showed below chance

decoding, which would be expected because the object was

always in a different quadrant before occlusion in comparison

to after occlusion. We furthermore examined the classifier
Bayes factors (BFs) over time are shown below the timecourse. BF

combination of training and test timepoints displayed in row 1.

and BFs supporting the null hypothesis are shown in blue. Row 2

the same training and test timepoint, with the BFs shown below

1. Rows 3 and 4 show the results of the temporal-generalisation a

occlusion trials in the training set and tested the classifier on all

colours represent the decoding accuracy for each combination of

indicating above chance decoding. The BF plotting conventions in

4 suggest that there is some evidence for shape information wh

shape information in the signal when the object is occluded. B) Th

condition. Note the time-course for this task is shorter, as the st
errors which could provide insight into which position is

represented at a given time. Focusing on the diagonal of the

temporal-generalisation matrix, we plotted the percentage of

predictions for each quadrant at each timepoint. When the

object was visible (before and after occlusion), the classifier

wasmost likely to predict the correct quadrant and least likely

to predict the opposite quadrant. During occlusion, this

pattern of predictions remained (Fig. 5A, row 4).

We repeated these analyses for the disappearance condi-

tion to ascertain whether the position decoding during oc-

clusion could be driven by lingering activation prior to

occlusion. Overall, the results for the disappearance condition

looked very similar to the occlusion condition. We found ev-

idence for position decoding when the object was visible and

after it had disappeared (see Fig. 5B, row 1). The sensor

searchlight showed that the posterior sensors contributed the

most to the position decoding (Fig. 5B, row 1). The decoding

was highest along the diagonal, but spread to neighbouring

timepoints (see Fig. 5B, rows 2 and 3), mirroring the results

found in the occlusion analysis. The diagonal predictions for

the disappearance task showed that the classifier was most

likely to predict the correct quadrant, and least likely to pre-

dict the opposite quadrant, both before and after the disap-

pearance (Fig. 5B, row 4). Overall, the high similarity between

the position effects in the occlusion and disappearance con-

ditions suggests that position information during invisible

periods is not specific to occlusion. However, the disappear-

ance condition may not be a reliable control for occlusion, as

participantsmay be primed to see the object to re-appear after

viewing many occlusion trials. In addition, the gradual nature

of disappearance may strengthen the intuition that the object

may re-appear. We further explore these caveats in the dis-

cussion (section 4.3).

3.3.2. Position cross-decoding analysis
The position within-decoding results described above could

be driven, at least in part, by eye movements. We therefore

used a position cross-decoding analysis, where we trained the

classifier on the unpredictable position streams to distinguish

between possible object positions and tested the classifier on

object position in the occlusion and disappearance trials. As

stimulus location was unpredictable for the training dataset,

any consistent eyemovements in the test set cannot influence

the decoding success. We ran this analysis separately for the

twomovement directions, whichmeans that the object can be

in four possible positions at a given time as there were four

different starting positions. For the unpredictable position
s are plotted on a logarithmic scale for the decoding for each

BFs supporting the alternative hypothesis are shown in red

shows the position-dependent shape decoding over time for

the timeseries. Plotting conventions are the same as in Row

nalysis. We trained a linear classifier on all timepoints of the

timepoints of separate occlusion trials in the test set. The

training and test timepoints, with the green colours

Row 4 are the same as in rows 1 and 2. Together, rows 3 and

en the object is visible. There is only limited evidence for

e same analyses as in A are repeated for the disappearance

imulus does not re-appear.
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Fig. 4 e Luminance decoding results for the occlusion (A) and disappearance (B) conditions. All plotting conventions are the

same as in Fig. 3. A) Luminance decoding for the occlusion condition. Row 1 shows the position-independent luminance

decoding on the diagonal. Row 2 shows the position-dependent luminance decoding over time. Row 3 shows the temporal-

generalisation for position-independent luminance decoding, and Row 4 shows the corresponding Bayes factors on a

logarithmic scale. B) The same analyses were repeated for the disappearance condition.
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Fig. 5 e Position within-decoding results for the occlusion (A) and disappearance (B) condition. All plotting conventions are

the same as in Fig. 3. A) Position decoding for the occlusion task. Row 1 shows time-series decoding along the diagonal

along with BFs and time-varying topographies from the channel-searchlight analysis. We trained a linear classifier to

distinguish between the object position in one of four possible quadrants. Therefore, theoretical chance is at 25%.

Bootstrapped peak decoding time 95% confidence intervals are shown as grey bars above the topographies. Row 2 shows the

temporal-generalisation for position decoding. The colours represent the decoding accuracy per combination of training

and test timepoints. Green colours indicate above chance decoding. Row 3 shows the corresponding Bayes factors on a

logarithmic scale, with BFs supporting the alternative hypothesis shown in red and BFs supporting the null hypothesis

shown in blue. Row 4 shows the classifier predictions for the diagonal (i.e., same training and test timepoint). The classifier

can predict the correct quadrant, previous or next quadrant, or the opposite quadrant. The colours show how often the

classifier predicted each quadrant (theoretical chance is 25%). B) Same analyses described in A but for the disappearance

condition.
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stream, the objects appeared in one of all 64 possible posi-

tions. To train the classifier at each timepoint, we selected

unpredictable position trials where the object was in one of

the four possible positions to match the test set. Thus, theo-

retical chance was at 25% as the classifier was trained and

tested to distinguish four different positions at each time-

point. The results for the occlusion condition showed that

there was information about the positionwhen the object was

visible (before and after occlusion; see Fig. 6A, rows 1 and 2).

Therewas evidence for position decodingwhen the objectwas

occluded in the first 200 ms of the occlusion period, after

which position decoding was at chance.

To gain insight into the predictions of the classifier, we

analysed the classifier predictions for classifiers trained at

three specific timepoints (80 ms, 120 ms, and 160 ms) chosen

based on the pilot data (see supplementary information). No

clear patterns were apparent for the classifier predictions

trained on data from 80 ms after stimulus onset (Fig. 6A, row

3). However, an interesting pattern emerged for classifiers

trained at 120 ms (Fig. 6A, row 4) and 160 ms (Fig. 6A, row 5)

after stimulus onset. When the object was visible (before and

after occlusion), the classifier was most likely to predict the

correct quadrant and least likely to predict the opposite

quadrant. However, after ~200 ms of occlusion, the classifier

was most likely to predict the next quadrant. This suggests

that instead of tracking the motion during occlusion, the po-

sition representation jumps ahead to the location where the

object is expected to reappear.

To determine whether the position coding during occlu-

sion could be driven by the time prior to occlusion, we

repeated the analysis for the disappearance task. Overall, the

results for the disappearance condition were very similar to

the results of the occlusion condition. There was position

coding when the object was visible and briefly after the

disappearance (Fig. 6B, rows 1 and 2), similar to the object

coding during occlusion. The predictions showed no clear

pattern for the classifier trained at 80 ms after stimulus onset

(Fig. 6B, row 3). However, the predictions for the classifiers

trained at 120 ms (Fig. 6B, row 4) and 160 ms (Fig. 6B, row 5)

showed a similar pattern to that found for the occlusion

condition.When the objectwas visible, the classifier wasmost

likely to predict the correct quadrant and least likely to predict

the opposite quadrant. After the object had disappeared, the

most likely prediction jumped from the correct quadrant to

the next quadrant, where the object reappeared in the occlu-

sion trials. This suggests implicit predictions of where the

object reappears after occlusion might have persisted into the

disappearance task, where the object did not reappear. We

discuss this possibility in more detail in the discussion.

3.4. Eye tracking analyses

To test whether eye-movements were a potential confound for

the position within-decoding analysis, we ran the same anal-

ysis on the eye tracking data. We trained the classifier to

distinguish between the different positions at each timepoint

using the X- and Y-coordinates of the eye tracking data. The

results showed above chance decoding when the object was

visible in the occlusion task (Fig. 7A, row 1). In addition, there

was evidence for above chance position decoding during
occlusion. We also assessed whether there was mutual infor-

mation between the eye tracking and theMEG data (Quax et al.,

2019). Themutual information is shown in row2 of Fig. 7A,with

mutual information values of zero indicating that the MEG

signal and eye position are independent, and larger values

indicating a greater relationship between them. There was

mutual information between the eye tracking and theMEGdata

for the occlusion task. Running the position cross-decoding

analysis on the X- and Y-coordinates of the eye tracking data

showed that there is no reliable information about the object

position in the unpredictable position eye tracking data (Fig. 7A,

rows 3e5). This highlights that the position-cross decoding

analysis is unlikely to be biased by eye movements.

We found similar results for the disappearance condition,

there was evidence for above chance quadrant decoding

using the eye tracking data, both when the object was visible

and after it had disappeared (Fig. 7B, row 1). In addition, there

was mutual information between the eye tracking and the

MEG data for the disappearance condition (Fig. 7B, row 2). For

the position cross-decoding analysis, we did not find reliable

position information in the eye tracking data. Together,

these results suggests that eye movements could have

contributed to the position within-decoding analysis but not

to the position cross-decoding. We therefore must interpret

the results from the position within-decoding analysis with

caution. We further consider the implications of this in the

discussion.
4. Discussion

When an object brieflymoves out of sight due to occlusion, we

often have the impression that the object persists. The aim of

the current study was to examine the nature of object repre-

sentations during such dynamic occlusion events. Specif-

ically, we tested whether the representation of objects during

occlusion is feature-rich and perception-like or more abstract.

Using sensor-based MEG classification analyses, when the

object was visible, we could decode information from the

neural signal about object shape, luminance, and position,

albeit with stronger evidence for position than shape or

luminance. During occlusion, position information was

maintained in the initial period for ~200 ms, but evidence for

luminance and shape representation was weak to non-

existent. This challenges the notion that there is a

continued, feature-rich representation of object properties

during periods of occlusion (cf. Gibson et al., 1969).

4.1. Maintained and updated position representations
during occlusion

Resolving motion over periods of occlusion requires an inte-

gration of information over space and time. We showed that

there is information about object position and object features

in the neural signal while the object is visible before and after

occlusion. Previous work has shown that the integration of

visible motion trajectories before and after occlusion is so

strong that slight inconsistencies between object features

before and after occlusion are overruled if the timing and

position of the object re-appearing is consistent (e.g., Burke,

https://doi.org/10.1016/j.cortex.2022.04.009
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1952; Carey & Xu, 2001; Flombaum et al., 2009; Yi et al., 2008).

For example, when a differently coloured object reappears

after occlusion at the right time and place, we tend to perceive

the reappearing object to be the same object as that seen prior

to occlusion just with a changed feature. This indicates that

we value spatiotemporal consistency higher than featural

consistency, despite the fact natural objects typically do not

change colour or shape. Our results show that position in-

formation is present in the signal before and after occlusion,

presumably allowing for the integration between visible mo-

tion trajectories bridging the occlusion period.

During occlusion, position information was maintained to

a certain degree but after an initial period, predictions about

the next visible position dominated. Previous work on visible

motion has shown that predictions of motion trajectories are

always taking place (Blom et al., 2020), potentially to account

for the delay between a visual event happening in the external

world and our internal perception of that event (Hogendoorn,

2021). Predicting or extrapolating motion trajectories ahead of

time has been shown to extend into perceptual gaps such as

eyeblinks (Maus, Goh, & Lisi, 2020) and the retinal blind spot

(Maus & Nijhawan, 2008; Shi & Nijhawan, 2012). Similarly, our

data show that position information is represented in the

initial occlusion period, indicating that motion information is

extrapolated into the perceptual gap caused by occlusion.

After this initial period of occlusion, we found no reliable

position information when using a cross-generalisation

approach, training the classifier on trials from the unpredict-

able position streamwhere stimuliwere visible. Looking at the

predictions in the cases of misclassification showed that the

later timepoints during occlusion carry information about the

location where the object will re-appear after occlusion. Thus,

these results show that there is accuratemotion extrapolation

into the initial period of occlusion with an abrupt change in

prediction to the leading quadrant where the object is ex-

pected to become visible again.

In contrast to the cross-classification approach, there was

evidence for position information throughout the occlusion

period when training and testing the classifier on the occlu-

sion trials. One possible explanation for this difference is that

eye movements contributed to the above-chance classifica-

tion in this within-classification position analysis. Themutual

information analysis indeed showed that there was mutual

information between the MEG data and the eye tracking data.

However, it is also possible the mutual information between

the MEG data and eye data reflected the expectation of the

position of the occluded object. In particular, the position

cross-decoding analysis, which is highly unlikely to be influ-

enced by eye movements, shows that there are strong pre-

dictions about the object's reappearance position post-

occlusion. Thus, if both the eye tracking and MEG data carry

information about the reappearance position, the mutual in-

formation analysis would pick up on this commonality. In line

with this interpretation, we found that posterior sensors are

the main contributor to the above-chance classification,

which is not consistent with eyemovements alone driving the

above-chance classification (we would expect frontal sensors

to be primarily recording eye movement signals). Another

possible explanation for the difference between the position

within-decoding and position cross-decoding results is that
the signal evoked by visible motion is different to that of

invisible or imagined motion. Previous work has shown that

imagined motion evokes a temporally diffuse signal while

visible motion is temporally more aligned (Robinson et al.,

2021). Thus, it seems likely that representations during the

later stages of occlusion are maintained in a different way,

making it challenging to pick up on meaningful information

with a cross-classification approach.

4.2. Limited evidence for object identity feature
representation during occlusion

In addition to examining position information, we investigated

the representation of object identity features (luminance and

shape) and found little to no evidence that these features are

maintained during occlusion. When the object was visible,

there was some evidence for shape and luminance informa-

tion in the neural signal, however, evidence was weaker in

comparison to position information. Additionally, we were

able to cross-generalise from pre-occlusion to post-occlusion

timepoints highlighting that the position-independent repre-

sentations of object identity before and after occlusion are

similar. During occlusion, object feature information was

limited and if present, temporally diffuse. We could not suc-

cessfully cross-generalise from the times when the stimulus

was visible to the times when the object was occluded, which

could mean that the representation of object identity through

occlusion is not perception-like. However, we must be careful

with this interpretation as the evidence for object feature in-

formation was relatively weak even during the visible period,

making the lack of effects during occlusion difficult to inter-

pret. Visible stimuli usually evoke stronger and more

temporally-aligned signal than imagined or internally-

generated signals (e.g., Robinson et al., 2021; Teichmann,

Grootswagers, Carlson, & Rich, 2019; Teichmann,

Grootswagers, et al., 2021). Here, however, the evidence for

shape and luminance representation for visiblemoving stimuli

in the periphery were already weak. A likely explanation for

unreliable representations of visible stimuli in the periphery is

cortical magnification. Specifically, we would expect to see

weaker signals in response to stimuli presented in the pe-

riphery in comparison to stimuli presented at the fovea, as the

receptive field size increases. A stimulus presented in the pe-

riphery engages a smaller cortical portion which, in turn,

means we would need a finer scale to record distinguishable

patterns of activity for peripheral stimulus presentation versus

foveal presentation. It is also possible that the representation

of object features during occlusion depends on task demands.

In our initial pilot (see supplementary materials), we found

that participants were able to report whether an object that

reappeared after occlusion was the same or different. This

indicates that information about the object identity must be

retained to some extent. In fact, the data collected while par-

ticipants focus on the object identity feature show above-

chance decoding during occlusion for object shape. In the

current experiment, we focussed on the “automatic” aspect of

occlusion and not attention orworkingmemory. Therefore, we

used a task that did not require maintenance of the stimulus

features. Given the results, it seems that shape and luminance

are not automatically maintained in a perception-like fashion

https://doi.org/10.1016/j.cortex.2022.04.009
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Fig. 6 e Position cross-decoding results for the occlusion (A) and disappearance (B) tasks. All plotting conventions are the

same as in Fig. 3. A) Position cross-decoding for the occlusion task. Row 1 shows the temporal-generalisation for position

decoding. We trained the classifier on unpredictable object position data and tested the classifier on object position in the

occlusion trials. Theoretical chance is at 25%. Green colours indicate above chance decoding. Row 2 shows the

corresponding Bayes factors on a logarithmic scale. Horizontal coloured dashed lines are used to indicate the training times

of 80 ms (orange), 120 ms (red), and 160 ms (blue), for which we analysed the classifier predictions (see row 3e5). Row 3

shows the classifier predictions for a classifier trained on the unpredictable object position data at 80 ms after stimulus

onset. The colours show how often the classifier predicted each position (correct quadrant, previous or next quadrant, or the

opposite quadrant). Theoretical chance is at 25%. Panel 4 shows the classifier predictions for a classifier trained at 120 ms

after stimulus onset, and panel 5 for a classifier trained at 160 ms after stimulus onset. B) Same analyses described in A but

for the disappearance condition.
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Fig. 7 e Eye tracking analyses. All plotting conventions are the same as in Fig. 3. A) Eye tracking analyses for the occlusion

task. Row 1 shows the position within-decoding for the diagonal (i.e., training and testing on the same timepoint). Shaded

error bars indicate the standard error of the mean. The mean decoding accuracy (black line) was temporally smoothed with

a kernel of 5 timepoints for plotting clarity only. Bayes factors are shown on a logarithmic scale below the plot. BFs

supporting the alternative hypothesis are shown in red and BFs supporting the null hypothesis are shown in blue. Row 2

shows the mutual information between the eye tracking and the MEG data. Plotting conventions are the same as in row 1.

Row 3e5 show the position cross-decoding analysis based on the eye tracking data for the selected training timepoints

(80 ms, 120 ms, 160 ms). The corresponding Bayes Factors are shown below each plot. B) Same analyses but for the

disappearance condition.
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during occlusion. A possible explanation for the lack of evi-

dence is that there is no need to automatically maintain all

features of an object while it is out of sight, as identity features

tend to remain unchanged. Building on the idea that visual

perception is serially dependent (cf. Fischer & Whitney, 2014),

it may be that the representation of identity features during

occlusion is paused and then biased towards the last visible

information prior to the gap. In contrast to object identity

features, position information changes through the period of

occlusion, thus updating information is required to make ac-

curate predictions.

4.3. Caveats and future directions

All effects we observed were highly similar for the occlusion

and the disappearance condition. While this could challenge

the notion that “going out of sight” is fundamentally different

from “ceasing to exist” (Gibson et al., 1969), the disappearance

condition may be limited in serving as a reliable control for

occlusion. First and foremost, it seems likely that participants

were primed to expect the object to reappear, as it did in half

of the experiment. Examining the position predictions right

after the disappearance supports this idea, showing that there

is an abrupt change from motion extrapolation to an expec-

tancy of the object to reappear in the following quadrant.

Second, the gradual nature of disappearance was chosen to

match the occlusion and disappearance conditions closely, as

we know that visual offset effects can be strong (Carlson et al.,

2011). However, gradual offsets make it more likely that an

object continues to exist while sudden offsets overwrite

extrapolated motion trajectories (Blom et al., 2020;

Hogendoorn, 2020; Maus & Nijhawan, 2006, 2009; Nijhawan,

2002, 2008). Thus, it is possible that the controlling the

gradual nature artificially created the similarity between oc-

clusion and disappearance conditions. Lastly, it is possible

that the difference between shrinking and gradually moving

behind an occluder was perceptually not large enough. It was

important for participants to fixate so that potential eye

movement effects did not overpower small neural signals.

However, fixating also meant that the object appeared in the

periphery, which might have made the difference between

occlusion versus brief period of shrinking for disappearance

less obvious. Thus, in the future it would be useful to contrast

gradual occlusion events with sudden offsets.

In the current experiment, we asked participants to

maintain fixation throughout the task. However, fixating

centrally while an object moves in the periphery does not

reflect natural vision.

In everyday life, eye movements may be critical to fill in

lacking visual information during occlusion. Future work

could investigate to what extent eyemovements contribute to

the maintenance of occluded visual information. Another

potential avenue for future work could be to investigate object

representations through different types of perceptual gaps.

For example, internally-driven events such as eyeblinks and

saccades occur frequently and also interrupt visual informa-

tion reaching the brain (Teichmann, Edwards, et al., 2021). It

would be interesting to examine whether dynamic visual
input is resolved in the same way through these types of

perceptual gaps.
5. Conclusion

Overall, our findings suggest that information that changes

over the occlusion period, such as position information, is

maintained and updated to some extent before prediction for

the next visual event occurs. For object features that do not

typically change, such as luminance and shape, there is less

evidence for automatic maintenance through occlusion. In

conclusion, these results challenge the idea that the repre-

sentation of visual information during periods of occlusion is

rich and perception-like and contribute to understanding how

the visual system bridges perceptual gaps.
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